Skip to main content

Part of the book series: Neuromethods ((NM,volume 110))

Abstract

Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that provides rapid and reliable detection of key brain neurotransmitters (e.g., dopamine and other monoamines) with minimal tissue disruption. The technique can be applied to behaving animals, allowing for real-time monitoring of neurotransmitter release and uptake across a variety of behavioral situations. Changes in current due to the oxidation and reduction (redox reaction) of chemicals at the surface of the working electrode are recorded and later converted to concentration. Although the high spatial and temporal resolution of FSCV offers unprecedented access to the neurochemistry of brain function during behavior, a basic understanding of electrochemistry, instrumentation, and electrode performance is required to ensure accurate data analysis and interpretation. In this chapter, we introduce the basic concepts and methodology of FSCV and outline key experimental procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garris PA, Rebec GV (2002) Modeling fast dopamine neurotransmission in the nucleus accumbens during behavior. Behav Brain Res 137:47–63

    Article  CAS  PubMed  Google Scholar 

  2. Rebec GV, Christensen JRC, Guerra C et al (1997) Regional and temporal differences in real time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 776:61–67

    Article  CAS  PubMed  Google Scholar 

  3. Robinson DL, Phillips PEM, Budygin EA et al (2001) Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport 12:2549–2552

    Article  CAS  PubMed  Google Scholar 

  4. Cheer JF, Wassum KM, Sombers LA et al (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 27:791–795

    Article  CAS  PubMed  Google Scholar 

  5. Cheer JF, Wassum KM, Heien ML et al (2004) Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci 24:4393–4400

    Article  CAS  PubMed  Google Scholar 

  6. Stuber GD, Roitman MF, Phillips PE et al (2005) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30:853–863

    Article  CAS  PubMed  Google Scholar 

  7. Brown HD, McCutcheon JE, Cone JJ et al (2011) Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. Eur J Neurosci 34:1997–2006

    Article  PubMed Central  PubMed  Google Scholar 

  8. Robinson DL, Heien ML, Wightman RM (2002) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci 22:10477–10486

    CAS  PubMed  Google Scholar 

  9. Johnson MA, Rajan V, Miller CE et al (2006) Dopamine release is severely compromised in the R6/2 mouse model of Huntington’s disease. J Neurochem 97:737–746

    Article  CAS  PubMed  Google Scholar 

  10. Ortiz AN, Kurth BJ, Osterhaus GL et al (2011) Impaired dopamine release and uptake in R6/1 Huntington’s disease model mice. Neurosci Lett 492:11–14. doi:10.1016/j.neuet.2011.01.036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bergstrom BP, Garris PA (2003) ‘Passive stabilization’ of striatal extracellular dopamine across the lesion spectrum encompassing the presymptomatic phase of Parkinson’s disease: a Voltammetric study in the 6-OHDA-lesioned rat. J Neurochem 87:1224–1236

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Le W, Xie W et al (2012) Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson’s disease. Neurobiol Aging 33:1001.e7–1001.e16. doi:10.1016/j.neurobiolaging.2011.03.022

    Article  CAS  Google Scholar 

  13. Wightman RM, Amatorh C, Engstrom RC et al (1988) Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25:513–523

    Article  CAS  PubMed  Google Scholar 

  14. Allen C, Peters JL, Sesack SR, Michael AC (2001) Micro-electrodes closely approach intact nerve terminals in vivo, while larger devices do not: a study using electrochemistry and electron microscopy. In: O’Connor WJ, Lowry JP, O’Connor JJ, O’Neill RD (eds) 9th international conference on in vivo methods. University College Dublin, Dublin, pp 89–90

    Google Scholar 

  15. Wu Q, Reith ME, Wightman RM et al (2001) Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real-time voltammetry. J Neurosci Methods 112:119–133

    Article  CAS  PubMed  Google Scholar 

  16. Millar J, Stamford JA, Kruk ZL, Wightman RM (1985) Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. Eur J Pharmacol 109:341–348

    Article  CAS  PubMed  Google Scholar 

  17. Garris PA, Christensen JRC, Rebec GV, Wightman RM (1997) Real-time measurement of electrically evoked extracellular dopamine in the striatum of freely moving rats. J Neurochem 68:152–161

    Article  CAS  PubMed  Google Scholar 

  18. Clark JJ, Sandber SG, Wanat MJ et al (2010) Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat Methods 7:126–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hart AS, Clark JJ, Phillips PEM (2015) Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning. Neurobiol Learn Mem 117:84–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Baur JE, Kristensen EW, May LJ, Wiedemann DJ, Wightman RM (1988) Fast-scan voltammetry of biogenic amines. Anal Chem 60:1268–1272

    Article  CAS  PubMed  Google Scholar 

  21. Bunin MA, Prioleau C, Mailman RB, Wightman RM (1998) Release and uptake rates of 5-hydroxytryptamine in the dorsal raphe and substantia nigra reticulata of the rat brain. J Neurochem 70:1077–1087

    Article  CAS  PubMed  Google Scholar 

  22. Iravani MM, Millar J, Kruk ZL (1998) Differential release of dopamine by nitric oxide in subregions of rat caudate putamen slices. J Neurochem 71:1969–1977

    Article  CAS  PubMed  Google Scholar 

  23. Sanford AL, Morton SW, Whitehouse KL et al (2011) Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal Chem 82:5205–5210

    Article  Google Scholar 

  24. Runnels PL, Joseph JD, Logman MJ, Wightman RM (1999) Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes. Anal Chem 71:2782–2789

    Article  CAS  PubMed  Google Scholar 

  25. Rebec GV (2007) From interferant anion to neuromodulator: Ascorbate oxidizes its way to respectability. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. Pennsylvania, Pittsburgh, pp 149–166

    Google Scholar 

  26. Phillip PEM, Robinson DL, Stuber GD et al (2003) Real-time measurements of phasic changes in extracellular dopamine concentration in freely moving rats by fast-scan cyclic voltammetry. In: Wang JQ (ed) Methods in molecular medicine, vol 79. Drugs of Abuse: Neurological Reviews and Protocols, Totowa

    Google Scholar 

  27. Cahill PS, Walker QD, Finnegan JM et al (1996) Microelectrodes for the measurement of catecholamines in biological systems. Anal Chem 68:3180–3186

    Article  CAS  PubMed  Google Scholar 

  28. Bucher ES, Brooks K, Verber MD et al (2013) A flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis. Anal Chem 85. doi:10.1021/ac402263x

    Google Scholar 

  29. Heien ML, Phillips PE, Stuber GD, Seipel AT, Wightman RM (2003) Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128:1413–1419

    Article  CAS  PubMed  Google Scholar 

  30. Heien MLAV, Khan AS, Ariansen JL et al (2005) Real-time measurements of dopamine fluctuations after cocaine in the brain behaving rats. Proc Natl Acad Sci U S A 102:10023–10028. doi:10.1073/pnas.0504657102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Budygin EA, Phillips PEM, Robinson DL et al (2001) Effect of acute ethanol on striatal dopamine neurotransmission in ambulatory rats. J Pharmacol Exp Ther 297:27–34

    CAS  PubMed  Google Scholar 

  32. Daberkow DP, Brown HD, Bunner KD et al (2013) Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals. J Neurosci 33:452–463. doi:10.1523/JNEUROSCI.2136-12.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Robinson DL, Wightman RM (2007) Rapid dopamine release in freely moving rats. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. Pennsylvania, Pittsburgh, pp 17–34

    Google Scholar 

  34. Bath BD, Michael DJ, Trafton BJ et al (2000) Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal Chem 72:5994–6002

    Article  CAS  PubMed  Google Scholar 

  35. Gerhardt GA, Oke AF, Nagy G et al (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Bran Res 290:390–395

    Article  CAS  Google Scholar 

  36. Turner RFB, Harrison DJ, Rojotte RV (1991) Preliminary in vivo biocompatibility studies on perfluorosulphonic acid polymer membranes for biosensor applications. Biomaterials 12:361–368

    Article  CAS  PubMed  Google Scholar 

  37. Cheer JF, Heien MLAV, Garris PA et al (2005) Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: Implications for intracranial self-stimulation. Proc Natl Acad Sci U S A 102:19150–19155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendra D. Bunner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bunner, K.D., Rebec, G.V. (2016). Voltammetry in Behaving Animals. In: Luján, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 110. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3064-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3064-7_24

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3063-0

  • Online ISBN: 978-1-4939-3064-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics