Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1359))

Abstract

The Solanaceae is one of the most important families for global agriculture. Among the different solanaceous species, tobacco (Nicotiana tabacum), potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum) are five crops of outstanding importance worldwide. In these crops, maximum yields are produced by hybrid plants created by crossing pure (homozygous) lines with the desired traits. Pure lines may be produced by conventional breeding methods, which is time consuming and costly. Alternatively, it is possible to accelerate the production of pure lines by creating doubled haploid (DH) plants derived from (haploid) male gametophytes or their precursors (androgenesis). In this way, the different steps for the production of pure lines can be reduced to only one generation, which implies important time and cost savings. This and other advantages make androgenic DHs the choice in a number of important crops where any of the different experimental in vitro techniques (anther culture or isolated microspore culture) is well set up. The Solanaceae family is an excellent example of heterogeneity in terms of response to these techniques, including highly responding species such as tobacco, considered a model system, and tomato, one of the most recalcitrant species, where no reliable and reproducible methods are yet available. Interestingly, the first evidence of androgenesis, particularly through in vitro anther culture, was demonstrated in a solanaceous species, Datura innoxia. In this chapter, we report the state of the art of the research about androgenic DHs in Solanaceae, paying special attention to datura, tobacco, potato, tomato, eggplant, and pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  2. Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404

    Article  Google Scholar 

  3. Seguí-Simarro JM, Nuez F (2008) Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res 120:358–369

    Article  PubMed  Google Scholar 

  4. Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordrecht, pp 309–335

    Chapter  Google Scholar 

  5. Dunwell JM (2009) Recent advances in the application of in vitro systems to plant improvement. Acta Hort 829:23–31

    Article  Google Scholar 

  6. Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    Article  CAS  PubMed  Google Scholar 

  7. Srivastava P, Chaturvedi R (2008) In vitro androgenesis in tree species: an update and prospect for further research. Biotechnol Adv 26:482–491

    Article  CAS  PubMed  Google Scholar 

  8. Knapp S, Bohs L, Nee M, Spooner DM (2004) Solanaceae – a model for linking genomics with biodiversity. Comp Funct Genom 5:285–291

    Article  CAS  Google Scholar 

  9. Bohs L (2007) Phylogeny of the Cyphomandra clade of the genus Solanum (Solanaceae) based on ITS sequence data. Taxon 56:1012–1026

    Article  Google Scholar 

  10. Simmonds NW (1974) Evolution of crop plants. Longman, London

    Google Scholar 

  11. Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the Jimson weed Datura stramonium. Science 55:646–647

    Article  CAS  PubMed  Google Scholar 

  12. Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 1:97–98

    Article  Google Scholar 

  13. Nitsch C, Norreel B (1973) Factors favoring the formation of androgenetic embryos in anther culture. Basic Life Sci 2:129–144

    CAS  PubMed  Google Scholar 

  14. Nitsch C, Norreel B (1973) Effect of thermal shock on embryogenic power of pollen of Datura innoxia cultured in anther or isolated from anther. Proc Acad Sci D 276:303–306

    Google Scholar 

  15. Forche E, Neumann KH (1977) Influence of various cultural factors on development of haploid plants by anther culture of Datura innoxia and Nicotiana tabacum ssp. Z Pflanzenzücht 79:250–255

    Google Scholar 

  16. Collins GB, Dunwell JM, Sunderland N (1974) Irregular microspore formation in Datura innoxia and its relevance to anther culture. Protoplasma 82:365–378

    Article  Google Scholar 

  17. Dunwell JM, Sunderland N (1976) Pollen ultrastructure in anther cultures of Datura innoxia. III. Incomplete microspore division. J Cell Sci 22:493–501

    CAS  PubMed  Google Scholar 

  18. Dunwell JM, Sunderland N (1976) Pollen ultrastructure in anther cultures of Datura innoxia. I. Division of the presumptive vegetative cell. J Cell Sci 22:469–480

    CAS  PubMed  Google Scholar 

  19. Dunwell JM, Sunderland N (1976) Pollen ultrastructure in anther cultures of Datura innoxia. II. The generative cell wall. J Cell Sci 22:481–491

    CAS  PubMed  Google Scholar 

  20. Sangwan RS, Sangwan-Norreel BS (1987) Ultrastructural cytology of plastids in pollen grains of certain androgenic and nonandrogenic plants. Protoplasma 138:11–22

    Article  Google Scholar 

  21. Sangwan RS, Ducrocq C, Sangwan-Norreel B (1993) Agrobacterium-mediated transformation of pollen embryos in Datura innoxia and Nicotiana tabacum: production of transgenic haploid and fertile homozygous dihaploid plants. Plant Sci 95:99–115

    Article  CAS  Google Scholar 

  22. Sharma VK, Jethwani V, Kothari SL (1993) Embryogenesis in suspension cultures of Datura innoxia Mill. Plant Cell Rep 12:581–584

    Article  CAS  PubMed  Google Scholar 

  23. Padmanabhan C, Gurunathan M, Pathmanabhan G, Oblisami G (1977) Induction of haploid plants from anther culture in Datura ferox L. Madras Agric J 64:542–543

    Google Scholar 

  24. Babbar SB, Gupta SC (1986) Putative role of ethylene in Datura metel microspore embryogenesis. Physiol Plant 68:141–144

    Article  CAS  Google Scholar 

  25. Babbar SB, Gupta SC (1986) Obligatory and period-specific requirement of iron for microspore embryogenesis in Datura metel anther cultures. Bot Mag Tokyo 99:225–232

    Article  CAS  Google Scholar 

  26. Babbar SB, Gupta SC (1986) Promotory and inhibitory effects of activated charcoal on microspore embryogenesis in Datura metel. Physiol Plant 66:602–604

    Article  CAS  Google Scholar 

  27. Babbar SB, Gupta SC (1986) Effect of carbon source on Datura metel microspore embryogenesis and the growth of callus raised from microspore-derived embryos. Biochem Physiol Pfl 181:331–338

    Article  CAS  Google Scholar 

  28. Iqbal MCM, Wijesekara KB (2007) A brief temperature pulse enhances the competency of microspores for androgenesis in Datura metel. Plant Cell Tiss Org Cult 89:141–149

    Article  Google Scholar 

  29. Sangwan RS, Camefort H (1983) The tonoplast, a specific marker of embryogenic microspores of Datura cultured in vitro. Histochemistry 78:473–480

    Article  CAS  PubMed  Google Scholar 

  30. Sangwan RS, Camefort H (1984) Cold treatment-related structural modifications in the embryogenic anthers of Datura. Cytologia 49:473–487

    Article  Google Scholar 

  31. Scogin R (1976) Isoenzyme patterns in androgenic, haploid Datura meteloides (Solanaceae). Experientia 32:562–563

    Article  CAS  Google Scholar 

  32. FAOSTAT (2014) http://faostat.fao.org. Accessed May 2014

  33. Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M, Golovkin M, Koprowski H (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8:277–287

    Article  CAS  PubMed  Google Scholar 

  34. Sanz-Barrio R, Corral-Martinez P, Ancin M, Segui-Simarro JM, Farran I (2013) Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. Plant Biotechnol J 11:618–627

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez-San Millan A, Ortigosa SM, Hervas-Stubbs S, Corral-Martinez P, Seguí-Simarro JM, Gaetan J, Coursaget P, Veramendi J (2008) Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J 6:427–441

    Article  CAS  PubMed  Google Scholar 

  36. Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect Immun 73:8266–8274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Tregoning JS, Clare S, Bowe F, Edwards L, Fairweather N, Qazi O, Nixon PJ, Maliga P, Dougan G, Hussell T (2005) Protection against tetanus toxin using a plant-based vaccine. Eur J Immunol 35:1320–1326

    Article  CAS  PubMed  Google Scholar 

  38. Shoseyov O, Posen Y, Grynspan F (2013) Human recombinant type I collagen produced in plants. Tissue Eng Part A 19:1527–1533

    Article  CAS  PubMed  Google Scholar 

  39. Lopez-Garcia B, Segundo BS, Coca M (2012) Antimicrobial peptides as a promising alternative for plant disease protection. In: Rajasekaran K, Cary JW, Jaynes JM, Montesinos E (eds) Small wonders: peptides for disease control, vol 1095. ACS symposium series, pp 263–294

    Google Scholar 

  40. Morandini F, Avesani L, Bortesi L, Van Droogenbroeck B, De Wilde K, Arcalis E, Bazzoni F, Santi L, Brozzetti A, Falorni A, Stoger E, Depicker A, Pezzotti M (2011) Non-food/feed seeds as biofactories for the high-yield production of recombinant pharmaceuticals. Plant Biotechnol J 9:911–921

    Article  CAS  PubMed  Google Scholar 

  41. Urreta I, Oyanguren I, Castanon S (2011) Tobacco as biofactory for biologically active hPL production: a human hormone with potential applications in type-1 diabetes. Transgenic Res 20:721–733

    Article  CAS  PubMed  Google Scholar 

  42. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  43. Bourgin JP, Nitsch JP (1967) Obtention de Nicotiana haploids à partir d'etamines cultivées in vitro. Ann Physiol Veg 9:377–382

    Google Scholar 

  44. Sunderland N, Wicks FM (1969) Cultivation of haploid plants from tobacco pollen. Nature 224:1227–1229

    Article  Google Scholar 

  45. Nakata K, Tanaka M (1968) Differentiation of embryoids from developing germ cells in anther culture of tobacco. Jpn J Genet 43:65–71

    Article  Google Scholar 

  46. Sunderland N, Wicks FM (1971) Embryoid formation in pollen grains of Nicotiana tabacum. J Exp Bot 22:213–226

    Article  Google Scholar 

  47. de Fossard RA (1974) Responses of callus from zygotal and microsporal tobacco (Nicotiana tabacum L.) to various combinations of indole acetic acid and kinetin. New Phytol 73:699–706

    Article  Google Scholar 

  48. Dunwell JM, Sunderland N (1974) Pollen ultrastructure in anther cultures of Nicotiana tabacum I. Early stages of culture. J Exp Bot 25:352–361

    Article  Google Scholar 

  49. Dunwell JM, Sunderland N (1974) Pollen ultrastructure in anther cultures of Nicotiana tabacum II. Changes associated with embryogenesis. J Exp Bot 25:363–373

    Article  Google Scholar 

  50. Sunderland N, Dunwell JM (1974) Anther and pollen culture. In: Street HE (ed) Plant tissue and cell culture. Blackwell, Oxford, pp 223–265

    Google Scholar 

  51. Dunwell JM, Sunderland N (1975) Pollen ultrastructure in anther cultures of Nicotiana tabacum III. The first sporophytic divisions. J Exp Bot 26:240–252

    Article  Google Scholar 

  52. Reinert J, Bajaj PS, Heberle E (1975) Induction of haploid tobacco plants from isolated pollen. Protoplasma 84:191–196

    Article  Google Scholar 

  53. Dunwell JM (1976) A comparative study of environmental and developmental factors which influence embryo induction and growth in cultured anthers of Nicotiana tabacum. Environ Exp Bot 16:109–118

    Article  Google Scholar 

  54. Collins GB, Sunderland N (1974) Pollen-derived haploids of Nicotiana knightiana, N. raimondii, and N. attenuata. J Exp Bot 25:1030–1039

    Article  Google Scholar 

  55. Touraev A, Heberle-Bors E (2003) Anther and microspore culture in tobacco. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Kluwer, Dordrecht, pp 223–228

    Chapter  Google Scholar 

  56. Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996) Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant Cell Rep 15:561–565

    Article  CAS  PubMed  Google Scholar 

  57. Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res 35:53–109

    Article  Google Scholar 

  58. Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  59. Touraev A, Pfosser M, Vicente O, Heberle-Bors E (1996) Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta 200:144–152

    Article  CAS  Google Scholar 

  60. Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  61. Benito Moreno RM, Macke F, Hauser M-T, Alwen A, Heberle-Bors E (1988) Sporophytes and male gametophytes from in vitro cultured, immature tobacco pollen. In: Gori P, Pacini E, Cresti M (eds) Sexual reproduction in higher plants. Springer, Berlin, pp 137–142

    Chapter  Google Scholar 

  62. Touraev A, Fink CS, Stoger E, HeberleBors E (1995) Pollen selection: a transgenic reconstruction approach. Proc Natl Acad Sci USA 92:12165–12169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Rashid A, Siddiqui AW, Reinert J (1982) Subcellular aspects of origin and structure of pollen embryos of Nicotiana. Protoplasma 113:202–208

    Article  Google Scholar 

  64. Testillano PS, Coronado MJ, Seguí-Simarro JM, Domenech J, Gonzalez-Melendi P, Raska I, Risueño MC (2000) Defined nuclear changes accompany the reprogramming of the microspore to embryogenesis. J Struct Biol 129:223–232

    Article  CAS  PubMed  Google Scholar 

  65. Garrido D, Eller N, Heberle-Bors E, Vicente O (1993) De novo transcription of specific mRNAs during the induction of tobacco pollen embryogenesis. Sex Plant Reprod 6:40–45

    Article  Google Scholar 

  66. Hosp J, Tashpulatov A, Roessner U, Barsova E, Katholnigg H, Steinborn R, Melikant B, Lukyanov S, Heberle-Bors E, Touraev A (2007) Transcriptional and metabolic profiles of stress-induced, embryogenic tobacco microspores. Plant Mol Biol 63:137–149

    Article  CAS  PubMed  Google Scholar 

  67. Coronado MJ, Gonzalez-Melendi P, Seguí-Simarro JM, Ramirez C, Barany I, Testillano PS, Risueno MC (2002) MAPKs entry into the nucleus at specific interchromatin domains in plant differentiation and proliferation processes. J Struct Biol 140:200–213

    Article  CAS  PubMed  Google Scholar 

  68. Kyo M, Ohkawa T (1991) Investigation of subcellular localization of several phosphoproteins in embryogenic pollen grains of tobacco. J Plant Physiol 137:525–529

    Article  CAS  Google Scholar 

  69. Kyo M, Harada H (1990) Specific phosphoproteins in the initial period of tobacco pollen embryogenesis. Planta 182:58–63

    Article  CAS  PubMed  Google Scholar 

  70. Kyo M, Harada H (1990) Phosphorylation of proteins associated with embryogenic dedifferentiation of immature pollen grains of Nicotiana rustica. J Plant Physiol 136:716–722

    Article  CAS  Google Scholar 

  71. Zarsky V, Garrido D, Eller N, Tupy J, Vicente O, Schöffl F, Heberle-Bors E (1995) The expression of a small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation. Plant Cell Environ 18:139–147

    Article  CAS  Google Scholar 

  72. Ribarits A, Mamun ANK, Li S, Resch T, Fiers M, Heberle BE, Liu C, Touraev A (2007) Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen. Plant Biotechnol J 5:483–494

    Article  CAS  PubMed  Google Scholar 

  73. Nuez F, Llácer G (2001) La horticultura española. Ediciones de Horticultura, S.L., Reus

    Google Scholar 

  74. Jacobsen E, Sopory SK (1978) Influence and possible recombination of genotypes on production of microspore embryoids in anther cultures of Solanum tuberosum and dihaploid hybrids. Theor Appl Genet 52:119–123

    Article  CAS  PubMed  Google Scholar 

  75. Sopory SK, Jacobsen E, Wenzel G (1978) Production of monohaploid embryoids and plantlets in cultured anthers of Solanum tuberosum. Plant Sci Lett 12:47–54

    Article  Google Scholar 

  76. Uhrig H, Salamani F (1987) Dihaploid plant production from 4X genotypes of potato by use of efficient anther plants producing tetraploid strains (4x EAPR-clones): proposal of breeding methodology. Plant Breed 98:228–235

    Article  Google Scholar 

  77. Iovene M, Aversano R, Savarese S, Caruso I, Di Matteo A, Cardi T, Frusciante L, Carputo D (2012) Interspecific somatic hybrids between Solanum bulbocastanum and S. tuberosum and their haploidization for potato breeding. Biol Plant 56:1–8

    Article  Google Scholar 

  78. Veilleux RE, Shen LY, Paz MM (1995) Analysis of the genetic composition of anther-derived potato by randomly amplified polymorphic DNA and simple sequence repeats. Genome 38:1153–1162

    Article  CAS  PubMed  Google Scholar 

  79. Rokka VM, Valkonen JPT, Pehu E (1995) Production and characterization of haploids derived from somatic hybrids between Solanum brevidens and S. tuberosum through anther culture. Plant Sci 112:85–95

    Article  CAS  Google Scholar 

  80. Tai GCC (2005) Haploids in the improvement of solanaceous species. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II, vol 56, Biotechnology in agriculture and forestry. Springer, Berlin, pp 173–190

    Chapter  Google Scholar 

  81. De Maine MJ (2003) Potato haploid technologies. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordretch, pp 241–247

    Chapter  Google Scholar 

  82. Rokka VM (2009) Potato haploids and breeding. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 199–208

    Chapter  Google Scholar 

  83. Tai GCC, Xiong XY (2003) Haploid production of potatoes by anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordretch, pp 229–234

    Chapter  Google Scholar 

  84. Rokka VM (2003) Anther culture through direct embryogenesis in a genetically diverse range of potato (Solanum) species and their interspecific and intergeneric hybrids. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordretch, pp 235–240

    Chapter  Google Scholar 

  85. Meyer R, Salamini F, Uhrig H (1993) Isolation and characterization of potato diploid clones generating a high frequency of monohaploid or homozygous diploid androgenetic plants. Theor Appl Genet 85:905–912

    CAS  PubMed  Google Scholar 

  86. Shen LY, Veilleux RE (1995) Effect of temperature shock and elevated incubation temperature on androgenic embryo yield of diploid potato. Plant Cell Tiss Org Cult 43:29–35

    Article  Google Scholar 

  87. Uhrig H (1985) Genetic selection and liquid medium conditions improve the yield of androgenetic plants from diploid potatoes. Theor Appl Genet 71:455–460

    Article  CAS  PubMed  Google Scholar 

  88. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  89. Teparkum S, Veilleux RE (1998) Indifference of potato anther culture to colchicine and genetic similarity among anther-derived monoploid regenerants determined by RAPD analysis. Plant Cell Tiss Org Cult 53:49–58

    Article  CAS  Google Scholar 

  90. Owen HR, Veilleux RE, Haynes FL, Haynes KG (1988) Photoperiod effects on 2n pollen production, response to anther culture, and net photosynthesis of a diplandrous clone of Solanum phureja. Am Potato J 65:131–139

    Article  Google Scholar 

  91. Pehu E, Veilleux RE, Hilu KW (1987) Cluster analysis of anther-derived plants of Solanum phureja (Solanaceae) based on morphological characteristics. Am J Bot 74:47–52

    Article  Google Scholar 

  92. Veilleux RE, Booze-Daniels J, Pehu E (1985) Anther culture of a 2n pollen producing clone of Solanum phureja Juz. & Buk. Can J Genet Cytol 27:559–564

    Article  Google Scholar 

  93. Teten Snider K, Veilleux RE (1994) Factors affecting variability in anther culture and in conversion of androgenic embryos of Solanum phureja. Plant Cell Tiss Org Cult 36:345–354

    Article  Google Scholar 

  94. Rokka VM, Ishimaru CA, Lapitan NLV, Pehu E (1998) Production of androgenic dihaploid lines of the disomic tetraploid potato species Solanum acaule ssp. acaule. Plant Cell Rep 18:89–93

    Article  CAS  Google Scholar 

  95. Hermsen JGT (1969) Induction of haploids and aneuhaploids in colchicine-induced tetraploid Solanum chacoense Bitt. Euphytica 18:183–189

    Google Scholar 

  96. Cappadocia M, Ahmim M (1988) Comparison of two culture methods for the production of haploids by anther culture in Solanum chacoense. Can J Bot 66:1003–1005

    Article  Google Scholar 

  97. Birhman RK, Rivard SR, Cappadocia M (1994) Restriction fragment length polymorphism analysis of anther-culture-derived Solanum chacoense. HortScience 29:206–208

    Google Scholar 

  98. Rivard SR, Sabaelleil MK, Landry BS, Cappadocia M (1994) RFLP analyses and segregation of molecular markers in plants produced by in vitro anther culture, selfing, and reciprocal crosses of 2 lines of self incompatible Solanum chacoense. Genome 37:775–783

    Article  CAS  PubMed  Google Scholar 

  99. Sharma S, Sarkar D, Pandey SK (2010) Phenotypic characterization and nuclear microsatellite analysis reveal genomic changes and rearrangements underlying androgenesis in tetraploid potatoes (Solanum tuberosum L.). Euphytica 171:313–326

    Article  CAS  Google Scholar 

  100. Rihova L, Tupy J (1999) Manipulation of division symmetry and developmental fate in cultures of potato microspores. Plant Cell Tiss Org Cult 59:135–145

    Article  Google Scholar 

  101. Sopory SK (1977) Development of embryoids in isolated pollen culture of dihaploid Solanum tuberosum. Z Pflanzenphysiol 84:453–457

    Article  Google Scholar 

  102. Bugárová Z, Pret’ová A (1996) Isolated microspore cultures in Solanum tuberosum L. cultivars. Biologia 51:411–416

    Google Scholar 

  103. Pretova A, Obert B, Bartosova Z (2006) Haploid formation in maize, barley, flax, and potato. Protoplasma 228:107–114

    Article  CAS  Google Scholar 

  104. Peralta IE, Spooner DM, Knapp S (2008) Systematic botany monographs: taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, Sect. Juglandifolia, Sect. Lycopersicon; Solanaceae), vol 84. Systematic botany monographs

    Google Scholar 

  105. Bal U, Abak K (2007) Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. Euphytica 158:1–9

    Article  Google Scholar 

  106. Jaramillo J, Summers WL (1990) Tomato anther callus production – solidifying agent and concentration influence induction of callus. J Am Soc Hortic Sci 115:1047–1050

    Google Scholar 

  107. Jaramillo J, Summers WL (1991) Dark-light treatments influence induction of tomato anther callus. HortScience 26:915–916

    Google Scholar 

  108. Bal U, Abak K (2005) Induction of symmetrical nucleus division and multicellular structures from the isolated microspores of Lycopersicon esculentum Mill. Biotechnol Biotech Eq 19:35–42

    Article  CAS  Google Scholar 

  109. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107:161–170

    Article  CAS  PubMed  Google Scholar 

  110. Ma YH, Kato K, Masuda M (1999) Efficient callus induction and shoot regeneration by anther culture in male sterile mutants of tomato (Lycopersicon esculentum Mill. cv. First). J Jpn Soc Hortic Sci 68:768–773

    Article  CAS  Google Scholar 

  111. Shtereva LA, Zagorska NA, Dimitrov BD, Kruleva MM, Oanh HK (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill). II. Factors affecting induction of androgenesis. Plant Cell Rep 18:312–317

    Article  CAS  Google Scholar 

  112. Zagorska NA, Shtereva A, Dimitrov BD, Kruleva MM (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill.) – I. Influence of genotype on androgenetic ability. Plant Cell Rep 17:968–973

    Article  CAS  Google Scholar 

  113. Seguí-Simarro JM, Nuez F (2005) Meiotic metaphase I to telophase II is the most responsive stage of microspore development for induction of androgenesis in tomato (Solanum lycopersicum). Acta Physiol Plant 27:675–685

    Article  Google Scholar 

  114. Seguí-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J Exp Bot 58:1119–1132

    Article  PubMed  CAS  Google Scholar 

  115. Corral-Martínez P, Nuez F, Seguí-Simarro JM (2011) Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms10 35 tomato anthers. Euphytica 178:215–228

    Article  Google Scholar 

  116. Zagorska NA, Shtereva LA, Kruleva MM, Sotirova VG, Baralieva DL, Dimitrov BD (2004) Induced androgenesis in tomato (Lycopersicon esculentum Mill.). III. Characterization of the regenerants. Plant Cell Rep 22:449–456

    Article  CAS  PubMed  Google Scholar 

  117. Gavrilenko T, Thieme R, Rokka VM (2001) Cytogenetic analysis of Lycopersicon esculentum (+) Solanum etuberosum somatic hybrids and their androgenetic regenerants. Theor Appl Genet 103:231–239

    Article  CAS  Google Scholar 

  118. Cappadocia M, Ramulu KS (1980) Plant regeneration from in vitro cultures of anthers and stem internodes in an interspecific hybrid, Lycopersicon esculentum L. x Lycopersicon peruvianum Mill. and cytogenetic analysis of the regenerated plants. Plant Sci Lett 20:157–166

    Article  Google Scholar 

  119. Sree Ramulu K (1982) Genetic instability at the S-locus of Lycopersicon peruvianum plants regenerated from in vitro culture of anthers: Generation of new S-specificities and S-allele reversions. Heredity 49:319–330

    Article  Google Scholar 

  120. Sree Ramulu K, Devreux M, Ancora G, Laneri U (1976) Chimerism in Lycopersicum peruvianum plants regenerated from in vitro cultures of anthers and stem internodes. Z Pflanzenzücht 76:299–319

    Google Scholar 

  121. Reynolds TL (1990) Wild tomato (Solanum carolinense L): anther culture and the induction of haploids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 12. Springer, Berlin, pp 498–513

    Google Scholar 

  122. Reynolds TL (1989) Ethylene effects on pollen callus formation and organogenesis in anther cultures of Solanum carolinense L. Plant Sci 61:131–136

    Article  CAS  Google Scholar 

  123. Reynolds TL (1987) A possible role for ethylene during iaa-induced pollen embryogenesis in anther cultures of Solanum carolinense L. Am J Bot 74:967–969

    Article  CAS  Google Scholar 

  124. Reynolds TL (1987) The roles of auxin and ethylene during pollen embryogenesis in Solanum carolinense L. Am J Bot 74:623–624

    Article  Google Scholar 

  125. Reynolds TL (1986) Pollen embryogenesis in anther cultures of Solanum carolinense L. Plant Cell Rep 5:273–275

    Article  CAS  PubMed  Google Scholar 

  126. Reynolds TL (1984) Callus formation and organogenesis in anther cultures of Solanum carolinense L. J Plant Physiol 117:157–161

    Article  CAS  PubMed  Google Scholar 

  127. Zamir D, Jones RA, Kedar N (1980) Anther culture of male sterile tomato (Lycopersicon esculentum Mill.) mutants. Plant Sci Lett 17:353–361

    Article  Google Scholar 

  128. Shtereva L, Atanassova B (2001) Callus induction and plant regeneration via anther culture in mutant tomato (Lycopersicon esculentum Mill.) lines with anther abnormalities. Israel J Plant Sci 49:203–208

    Article  CAS  Google Scholar 

  129. Evans DA, Morrison RA (1989) Tomato anther culture. USA Patent

    Google Scholar 

  130. Dunwell JM (2009) Patents and haploid plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 97–113

    Chapter  Google Scholar 

  131. Gulshan TMV, Sharma DR (1981) Studies on anther cultures of tomato – Lycopersicon esculentum Mill. Biol Plant 23:414–420

    Article  Google Scholar 

  132. Levenko BA, Kunakh VA, Yurkova GN (1977) Studies on callus tissue from anthers. 1. Tomato. Phytomorphology 27:377–383

    Google Scholar 

  133. Summers WL, Jaramillo J, Bailey T (1992) Microspore developmental stage and anther length influence the induction of tomato anther callus. HortScience 27:838–840

    Google Scholar 

  134. Brasileiro ACR, Willadino L, Carvalheira GG, Guerra M (1999) Callus induction and plant regeneration of tomato (Lycopersicon esculentum cv. IPA 5) via anther culture. Cienc Rural 29:619–623

    Article  Google Scholar 

  135. Dao NT, Shamina ZB (1978) Cultivation of isolated tomato anthers. Sov Plant Physiol 25:120–126

    Google Scholar 

  136. Chlyah A, Taarji H, Chlyah H (1990) Tomato (Lycopersicon esculentum L.): anther culture and induction of androgenesis. In: Bajaj YPS (ed) Haploids in crop improvement I. Vol 12, Biotechnology in agriculture and forestry. Springer, Berlin, pp 442–457

    Chapter  Google Scholar 

  137. Cordewener JHG, Custers JBM, van Lookeren-Campagne MM (1998) Microspore culture: a model for investigating the role of stress in the induction of embryogenesis. In: Chupeau Y, Caboche M, Henry Y (eds) Androgenesis and haploid plants. Springer, Berlin, pp 54–68

    Google Scholar 

  138. Reynolds TL (1997) Pollen embryogenesis. Plant Mol Biol 33:1–10

    Article  CAS  PubMed  Google Scholar 

  139. Binarova P, Hause G, Cenklova V, Cordewener JHG, van Lookeren-Campagne MM (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod 10:200–208

    Article  Google Scholar 

  140. Gresshoff PM, Doy CH (1974) Derivation of a haploid cell line from Vitis vinifera and importance of stage of meiotic development of anthers for haploid culture of this and other genera. Z Pflanzenphysiol 73:132–141

    Article  Google Scholar 

  141. De Storme N, Geelen D (2013) Pre-meiotic endomitosis in the cytokinesis-defective tomato mutant pmcd1 generates tetraploid meiocytes and diploid gametes. J Exp Bot 64:2345–2358

    Article  PubMed  CAS  Google Scholar 

  142. Seguí-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hort 725:855–861

    Article  Google Scholar 

  143. Soriano M, Li H, Boutilier K (2013) Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod 26:181–196

    Article  PubMed Central  PubMed  Google Scholar 

  144. Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  CAS  PubMed  Google Scholar 

  145. Seguí-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12

    Article  PubMed  CAS  Google Scholar 

  146. Bal U (2003) Attempts of haploidy induction in tomato (Lycopersicon esculentum Mill.) via gynogenesis I: pollination with Solanum sisymbriifolium Lam pollen. Pak J Biol Sci 6:745–749

    Article  Google Scholar 

  147. Nishiyama I, Uematsu S (1967) Radiobiological studies in plants – XIII. Embryogenesis following X-irradiation of pollen in Lycopersicum pimpinellifolium. Radiat Bot 7:481–489

    Google Scholar 

  148. Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  149. Collonnier C, Fock I, Kashyap V, Rotino GL, Daunay MC, Lian Y, Mariska IK, Rajam MV, Servaes A, Ducreux G, Sihachakr D (2001) Applications of biotechnology in eggplant. Plant Cell Tiss Org Cult 65:91–107

    Article  CAS  Google Scholar 

  150. Raina SK, Iyer RD (1973) Differentiation of diploid plants from pollen callus in anther cultures of Solanum melongena L. Z Pflanzenzücht 70:275–280

    Google Scholar 

  151. Isouard G, Raquin C, Demarly Y (1979) Obtention de plantes haploides et diploides par culture in vitro d'anthères dáubergine (Solanum melongena L.). C R Acad Sci Paris 288:987–989

    Google Scholar 

  152. Research-Group-of-Haploid-Breeding Induction of haploid plants of Solanum melongena. In: Proceedings of the symposium on plant tissue culture, Peking, 1978. Science Press, pp 227–232

    Google Scholar 

  153. Misra NR, Varghese TM, Maherchandani N, Jain RK (1983) Studies on induction and differentiation of androgenic callus of Solanum melongena L. In: Sen SK, Giles KL (eds) Plant cell culture in crop improvement. Plenum, New York, NY, pp 465–468

    Chapter  Google Scholar 

  154. Dumas de Vaulx R, Chambonnet D (1982) Culture in vitro d'anthères d'aubergine (Solanum melongena L.): stimulation de la production de plantes au moyen de traitements à 35 °C associés à de faibles teneurs en substances de croissance. Agronomie 2:983–988

    Article  Google Scholar 

  155. Chambonnet D (1988) Production of haploid eggplant plants. Bulletin interne de la Station d'Amelioration des Plantes Maraicheres d'Avignon-Montfavet, Paris, pp 1–10

    Google Scholar 

  156. Rotino GL, Sihachakr D, Rizza F, Vale G, Tacconi MG, Alberti P, Mennella G, Sabatini E, Toppino L, D'Alessandro A, Acciarri N (2005) Current status in production and utilization of dihaploids from somatic hybrids between eggplant (Solanum melongena L.) and its wild relatives. Acta Physiol Plant 27:723–733

    Article  CAS  Google Scholar 

  157. Rotino GL (1996) Haploidy in eggplant. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 3. Kluwer, Dordrecht, pp 115–141

    Chapter  Google Scholar 

  158. Salas P, Rivas-Sendra A, Prohens J, Seguí-Simarro JM (2012) Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica 184:235–250

    Article  Google Scholar 

  159. Salas P, Prohens J, Seguí-Simarro JM (2011) Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 182:261–274

    Article  CAS  Google Scholar 

  160. Tuberosa R, Sanghineti MC, Conti S (1987) Anther culture of eggplant Solanum melongena L. lines and hybrids. Genét Agr 41:267–274

    Google Scholar 

  161. Rotino GL, Falavigna A, Restaino F (1987) Production of anther-derived plantlets of eggplant. Capsicum Newsl 6:89–90

    Google Scholar 

  162. Rotino GL, Restaino F, Gjomarkaj M, Massimo M, Falavigna A, Schiavi M, Vicini E (1991) Evaluation of genetic variability in embryogenetic and androgenetic lines of eggplant. Acta Hort 300:357–362

    Google Scholar 

  163. Sanguineti MC, Tuberosa R, Conti S (1990) Field evaluation of androgenetic lines of eggplant. Acta Hort 280:177–182

    Article  Google Scholar 

  164. Borgel A, Arnaud M (1986) Progress in eggplant breeding, use of haplomethod. Capsicum Newsl 5:65–66

    Google Scholar 

  165. Gémes-Juhasz A, Venczel G, Sagi ZS, Gajdos L, Kristof Z, Vagi P, Zatyko L (2006) Production of doubled haploid breeding lines in case of paprika, spice paprika, eggplant, cucumber, zucchini and onion. Acta Hort 725:845–854

    Article  Google Scholar 

  166. Rizza F, Mennella G, Collonnier C, Shiachakr D, Kashyap V, Rajam MV, Prestera M, Rotino GL (2002) Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group Gilo as a source of resistance to Fusarium oxysporum f. sp. melongenae. Plant Cell Rep 20:1022–1032

    Article  CAS  Google Scholar 

  167. Rotino GL, Mennella G, Fusari F, Vitelli G, Tacconi MG, D’Alessandro A, Acciarri N (2001) Towards introgression of resistance to Fusarium oxysporum F. sp. melongenae from Solanum integrifolium into eggplant. In: Proceedings of the 11th Eucarpia meeting on genetics and breeding of capsicum and eggplant, Antalya, Turkey, pp 303–307

    Google Scholar 

  168. Miyoshi K (1996) Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L). Plant Cell Rep 15:391–395

    Article  CAS  PubMed  Google Scholar 

  169. Corral-Martínez P, Seguí-Simarro JM (2012) Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica 187:47–61

    Article  Google Scholar 

  170. Corral-Martínez P, Seguí-Simarro JM (2014) Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica 195:369–382

    Article  CAS  Google Scholar 

  171. Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133

    Article  Google Scholar 

  172. Dumas de Vaulx R (1990) Haploidy and pepper breeding: a review. Capsicum Newsl 8–9:13–17

    Google Scholar 

  173. Campos FF, Morgan DTJ (1958) Haploid pepper from a sperm. J Hered 49:135–137

    Google Scholar 

  174. Regner F (1996) Anther and microspore culture in Capsicum. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 3. Kluwer, Dordrecht, pp 77–89

    Chapter  Google Scholar 

  175. Wang Y-Y, Sun C-S, Wang C-C, Chien N-F (1973) The induction of the pollen plantlets of triticale and Capsicum annuum from anther culture. Sci Sin 16:147–151

    Google Scholar 

  176. Kuo JS, Wang YY, Chien NF, Ku SJ, Kung ML, Hsu HC (1973) Investigations on the anther culture in vitro of Nicotiana tabacum L. and Capsicum annuum L. Acta Bot Sin 15:47–52

    Google Scholar 

  177. George L, Narayanaswamy S (1973) Haploid Capsicum through experimental androgenesis. Protoplasma 78:467–470

    Article  Google Scholar 

  178. Novak FJ (1974) Induction of a haploid callus in anther cultures of Capsicum sp. Z Pflanzenzücht 72:46–54

    Google Scholar 

  179. Saccardo F, Devreux M (1974) In vitro production of plantlets from anther culture of Capsicum annuum. In: II Eucarpia meeting on genetics and breeding of capsicum, Budapest, Hungary, 1–4 July 1974, pp 45–50

    Google Scholar 

  180. Sibi M, Dumas de Vaulx R, Chambonnet D (1979) Obtention de plantes haploïdes par androgenèse in vitro chez le piment (Capsicum annuum L.). Ann Amélior Plant 29:583–606

    Google Scholar 

  181. Ercan N, Sensoy FA, Sensoy AS (2006) Influence of growing season and donor plant age on anther culture response of some pepper cultivars (Capsicum annuum L.). Sci Hortic 110:16–20

    Google Scholar 

  182. Morrison RA, Koning RE, Evans DA (1986) Anther culture of an interspecific hybrid of Capsicum. J Plant Physiol 126:1–9

    Article  Google Scholar 

  183. Ltifi A, Wenzel G (1994) Anther culture of hot and sweet pepper (Capsicum annuum L.): influence of genotype and plant growth temperature. Capsicum Eggplant Newsl 13:74–77

    Google Scholar 

  184. Qin X, Rotino GL (1993) Anther culture of several sweet and hot pepper genotypes. Capsicum Eggplant Newsl 12:59–62

    Google Scholar 

  185. Dumas de Vaulx R, Chambonnet D, Pochard E (1981) Culture in vitro d'anthères de piment (Capsicum annuum L.): amèlioration des taux d'obtenction de plantes chez différents génotypes par des traitments à +35 °C. Agronomie 1:859–864

    Article  Google Scholar 

  186. Kristiansen K, Andersen SB (1993) Effects of donor plant, temperature, photoperiod and age on anther culture response of Capsicum annuum L. Euphytica 67:105–109

    Article  Google Scholar 

  187. Supena EDJ, Muswita W, Suharsono S, Custers JBM (2006) Evaluation of crucial factors for implementing shed-microspore culture of Indonesian hot pepper (Capsicum annuum L.) cultivars. Sci Hortic 107:226–232

    Article  Google Scholar 

  188. Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25:1–10

    Article  CAS  PubMed  Google Scholar 

  189. Mityko J, Andrasfalvy A, Csillery G, Fari M (1995) Anther culture response in different genotypes and F1 hybrids of pepper (Capsicum Annuum L). Plant Breed 114:78–80

    Article  Google Scholar 

  190. Parra-Vega V, Renau-Morata B, Sifres A, Seguí-Simarro JM (2013) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell Tiss Org Cult 112:353–360

    Article  CAS  Google Scholar 

  191. Gémes Juhász A, Kristóf Z, Vági P, Lantos C, Pauk J (2009) In vitro anther and isolated microspore culture as tools in sweet and spice pepper breeding. Acta Hort 829:61–64

    Article  Google Scholar 

  192. Lefebvre V, Prevost T, Palloix A (1992) Segregation of molecular markers in doubled haploid progenies of pepper. In: Proceedings of the VIII EUCARPIA meeting on genetics and breeding of capsicum and eggplant. Rome, Italy, pp 232–235

    Google Scholar 

  193. Kim M, Kim J, Yoon M, Choi D-I, Lee K-M (2004) Origin of multicellular pollen and pollen embryos in cultured anthers of pepper (Capsicum annuum). Plant Cell Tiss Org Cult 77:63–72

    Article  CAS  Google Scholar 

  194. Barcaccia G, Tomassini C, Falcinelli M (1999) Further cytological evidence on the androgenesis pathway in pepper (Capsicum annuum L.). J Genet Breed 53:251–254

    Google Scholar 

  195. Seguí-Simarro JM, Bárány I, Suárez R, Fadón B, Testillano PS, Risueño MC (2006) Nuclear bodies domain changes with microspore reprogramming to embryogenesis. Eur J Histochem 50:35–44

    PubMed  Google Scholar 

  196. Barany I, Gonzalez-Melendi P, Fadón B, Mityko J, Risueño MC, Testillano PS (2005) Microspore-derived embryogenesis in pepper (Capsicum annuum L.): subcellular rearrangements through development. Biol Cell 97:709–722

    Article  CAS  PubMed  Google Scholar 

  197. Barany I, Testillano PS, Mityko J, Risueno MD (2001) The switch of the microspore developmental program in Capsicum involves HSP70 expression and leads to the production of haploid plants. Int J Dev Biol 45:S39–S40

    CAS  Google Scholar 

  198. González-Melendi P, Testillano PS, Ahmadian P, Fadón B, Risueño MC (1996) New in situ approaches to study the induction of pollen embryogenesis in Capsicum annuum L. Eur J Cell Biol 69:373–386

    PubMed  Google Scholar 

  199. González-Melendi P, Testillano PS, Ahmadian P, Fadón B, Vicente O, Risueño MC (1995) In situ characterization of the late vacuolate microspore as a convenient stage to induce embryogenesis in Capsicum. Protoplasma 187:60–71

    Article  Google Scholar 

  200. Barany I, Fadon B, Risueno MC, Testillano PS (2010) Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L. J Exp Bot 61:1159–1175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  201. Bárány I, Fadón B, Risueño MC, Testillano PS (2010) Microspore reprogramming to embryogenesis induces changes in cell wall and starch accumulation dynamics associated with proliferation and differentiation events. Plant Signal Behav 5:341–345

    Article  PubMed  Google Scholar 

  202. Hendy H, Pochard E, Dalmasso A (1985) Inheritance of resistance to Meloidogyne chitwood (Tylenchida) in 2 lines of Capsicum annuum L. – study of homozygous progenies obtained by androgenesis. Agronomie 5:93–100

    Article  Google Scholar 

  203. Palloix A (1992) Diseases of pepper and perspectives for genetic control. Capsicum Newsl Special Issue – Proceedings of the VIIIth EUCARPIA meeting on genetics and breeding of capsicum and eggplant, pp 120–126

    Google Scholar 

  204. Arnedo Andrés MS, Garcés Claver A, Esteban Chapapría J, Peiró Abril JL, Palazón C, Luis Arteaga M, Gil Ortega R (2004) Application of anther culture and molecular markers to a pepper breeding program for diseases resistance. Capsicum Eggplant Newsl 23:105–108

    Google Scholar 

  205. Dumas de Vaulx R, Pochard E (1986) Parthogénese et androgénese chez le piment. Role actuel dans les programmes de selection. Le Select Fran 36:3–16

    Google Scholar 

  206. Gyulai G, Gémesné JA, Sági ZS, Venczel G, Pintér P, Kristóf Z, Törjék O, Heszky L, Bottka S, Kiss J, Zatykó L (2000) Doubled haploid development and PCR-analysis of F1 hybrid derived DH-R2 paprika (Capsicum annuum L.) lines. J Plant Physiol 156:168–174

    Article  CAS  Google Scholar 

  207. Gyulai G, Gémesné Juhász A, Sági ZS, Zatykó L, Heszky L, Venczel G (1999) PCR analysis of F1 hybrid derived DH pepper lines. Capsicum Eggplant Newsl 18:40–43

    Google Scholar 

  208. Jiang ZR, Li CL (1984) Observations and experiments on later generations of sweet x hot pepper derived by anther culture. Acta Hort Sin 11:191–194

    Google Scholar 

  209. Chen XS (1985) Determination of combining ability and analysis of heterosis in pollen lines of Capsicum annuum var. grossum Sendt. Acta Hort Sin 12:267–272

    Google Scholar 

  210. Chen XS (1984) Genetic expression of major characters in sweet pepper lines derived by anther culture. Acta Hort Sin 11:113–118

    Google Scholar 

  211. Hwang JK, Paek KY (1998) Breeding of resistant pepper lines (Capsicum annuum L.) to bacterial spot (Xanthomonas campestris Pv. Vesicatoria) through anther culture. Acta Hort 461:301–307

    Article  Google Scholar 

  212. Daubèze AM, Palloix A, Pochard E (1990) Resistance of androgenetic autodiploid lines of pepper to Phytophthora capsici and tobacco mosaic virus under high temperature. Capsicum Newsl 8–9:47–48

    Google Scholar 

  213. Irikova T, Grozeva S, Rodeva V (2011) Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiol Plant 33:1559–1570

    Article  CAS  Google Scholar 

  214. Niklas-Nowak A, Olszewska D, Kisiała A, Nowaczyk P (2013) Study of individual plant responsiveness in anther cultures of selected pepper (Capsicum spp.) genotypes. Fol Hort 24:141–146

    Google Scholar 

  215. Olszewska D, Kisiała A, Nowaczyk P (2012) The assessment of doubled haploid lines obtained in pepper (Capsicum annuum L.) anther culture. Fol Hort 23:93–99

    Google Scholar 

  216. Kisiała A, Olszewska D, Niklas-Nowak A, Nowaczyk P (2011) Biometrical characteristics of R2 generation of anther-derived pepper (Capsicum spp.) plants. Acta Agrobot 64:53–58

    Article  Google Scholar 

  217. Nowaczyk P, Kisiala A, Olszewska D (2006) Induced androgenesis of Capsicum frutescens L. Acta Physiol Plant 28:35–39

    Article  CAS  Google Scholar 

  218. Wu HM, Zhang SZ (1986) Effect of acridine yellow on development of anthers of Capsicum frutescens var. longum cultured in vitro. Jiangsu J Agric Sci 2:34–39

    Google Scholar 

  219. Lantos C, Juhász A, Somogyi G, Ötvös K, Vági P, Mihály R, Kristóf Z, Somogyi N, Pauk J (2009) Improvement of isolated microspore culture of pepper (Capsicum annuum L.) via co-culture with ovary tissues of pepper or wheat. Plant Cell Tiss Org Cult 97:285–293

    Article  Google Scholar 

  220. Asif M, Eudes F, Randhawa H, Amundsen E, Yanke J, Spaner D (2013) Cefotaxime prevents microbial contamination and improves microspore embryogenesis in wheat and triticale. Plant Cell Rep 32(10):1637–1646

    Article  CAS  PubMed  Google Scholar 

  221. Parra-Vega V, González-García B, Seguí-Simarro JM (2013) Morphological markers to correlate bud and anther development with microsporogenesis and microgametogenesis in pepper (Capsicum annuum L.). Acta Physiol Plant 35:627–633

    Article  Google Scholar 

  222. Dumas de Vaulx R, Chambonnet D, Pochard E (1981) In vitro culture of pepper (Capsicum annuum L.) anthers. High-rate plant production from different genotypes by +35 °C treatments. Agronomie 1:859–864

    Article  Google Scholar 

  223. Vagera J, Havranek P (1985) In vitro induction of androgenesis in Capsicum Annuum L. and its genetic aspects. Biol Plant 27:10–21

    Article  CAS  Google Scholar 

  224. Munyon IP, Hubstenberger JF, Phillips GC (1989) Origin of plantlets and callus obtained from chile pepper anther cultures. In Vitro Cell Dev Biol Plant 25:293–296

    Article  Google Scholar 

  225. Morrison RA, Koning RE, Evans DA (1983) Pepper. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 4, Techniques and applications. Macmillan, New York, NY, pp 552–573

    Google Scholar 

  226. Vagera J, Havranek P (1983) Stimulating effect of activated charcoal in the induction of in vitro androgenesis in Capsicum annuum L. Capsicum Newsl 2:63–65

    Google Scholar 

  227. Dolcet-Sanjuan R, Claveria E, Huerta A (1997) Androgenesis in Capsicum annuum L – effects of carbohydrate and carbon dioxide enrichment. J Am Soc Hort Sci 122:468–475

    CAS  Google Scholar 

  228. Supena EDJ, Custers JBM (2011) Refinement of shed-microspore culture protocol to increase normal embryos production in hot pepper (Capsicum annuum L.). Sci Hortic 130:769–774

    Article  Google Scholar 

  229. Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27:425–434

    Article  CAS  PubMed  Google Scholar 

  230. Kim M, Park E-J, An D, Lee Y (2013) High-quality embryo production and plant regeneration using a two-step culture system in isolated microspore cultures of hot pepper (Capsicum annuum L.). Plant Cell Tiss Org Cult 112:191–201

    Article  CAS  Google Scholar 

  231. Lantos C, Juhasz AG, Vagi P, Mihaly R, Kristof Z, Pauk J (2012) Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.). Plant Biotechnol Rep 6:123–132

    Article  Google Scholar 

  232. Bajaj YPS, Gosch G, Ottma M, Weber A, Grobler A (1978) Production of polyploid and aneuploid plants from anthers and mesophyll protoplasts of Atropa belladonna and Nicotiana tabacum. Indian J Exp Biol 16:947–953

    Google Scholar 

  233. Bajaj YPS (1978) Effect of super-low temperature on excised anthers and pollen-embryos of Atropa, Nicotiana and Petunia. Phytomorphology 28:171–176

    Google Scholar 

  234. Mazzolani G, Pasqua G, Monacelli B (1981) Condizioni per la formazione di piante aploidi da pollini coltivati in vitro [Nicotiana tabacum e Atropa belladonna]. Ann Bot 38:107–117

    Google Scholar 

  235. Reynolds TL (1984) An ultrastructural and stereological analysis of pollen grains of Hyoscyamus niger during normal ontogeny and induced embryogenic development. Am J Bot 71:490–504

    Article  Google Scholar 

  236. Tu S, Sangwan RS, Raghavan V, Verma DPS, Sangwan-Norreel BS (2005) Transformation of pollen embryo-derived explants by Agrobacterium tumefaciens in Hyoscyamus niger. Plant Cell Tiss Org Cult 81:139–148

    Article  Google Scholar 

  237. Reynolds TL (1985) Ultrastructure of anomalous pollen development in embryogenic anther cultures of Hyoscyamus niger. Am J Bot 72:44–51

    Article  Google Scholar 

  238. Dodds JH, Reynolds TL (1980) A scanning electron-microscope study of pollen embryogenesis in Hyoscyamus niger. Z Pflanzenphysiol 97:271–276

    Article  Google Scholar 

  239. Corduan G (1975) Regeneration of anther-derived plants of Hyoscyamus niger L. Planta 127:27–36

    Article  CAS  PubMed  Google Scholar 

  240. Lorz H, Wernicke W, Potrykus I (1979) From isolated protoplasts to plants – regeneration and differentiation studies in the genus Hyoscyamus. Experientia 35:970

    Google Scholar 

  241. Raghavan V, Nagmani R (1989) Cytokinin effects on pollen embryogenesis in cultured anthers of Hyoscyamus niger. Can J Bot 67:247–257

    Article  CAS  Google Scholar 

  242. Wernicke W, Lorz H, Thomas E (1979) Plant regeneration from leaf protoplasts of haploid Hyoscyamus muticus L. produced via anther culture. Plant Sci Lett 15:239–249

    Article  Google Scholar 

  243. Raquin C, Cornu A, Farcy E, Maizonnier D, Pelletier G, Vedel F (1989) Nucleus substitution between Petunia species using gamma-ray-induced androgenesis. Theor Appl Genet 78:337–341

    Article  CAS  PubMed  Google Scholar 

  244. Raquin C (1983) Utilization of different sugars as carbon source for in vitro anther culture of Petunia. Z Pflanzenphysiol 111:453–457

    Article  CAS  Google Scholar 

  245. Raquin C (1982) Genetic control of embryo production and embryo quality in anther culture of Petunia. Theor Appl Genet 63:151–154

    Article  CAS  PubMed  Google Scholar 

  246. Gupta PP (1982) Genesis of microspore-derived triploid petunias. Theor Appl Genet 61:327–331

    CAS  PubMed  Google Scholar 

  247. Raquin C, Amssa M, Henry Y, Debuyser J, Essad S (1982) Origin of polyhaploid plants obtained through in vitro anther culture – cytophotometrical analysis of Petunia and wheat microspore in situ and in vitro. Z Pflanzenzücht 89:265–277

    Google Scholar 

  248. Martineau B, Hanson MR, Ausubel FM (1981) Effect of charcoal and hormones on anther culture of Petunia and Nicotiana. Z Pflanzenphysiol 102:109–116

    Article  Google Scholar 

  249. Mitchell AZ, Hanson MR, Skvirsky RC, Ausubel FM (1980) Anther culture of Petunia – genotypes with high-frequency of callus, root, or plantlet formation. Z Pflanzenphysiol 100:131–146

    Article  Google Scholar 

  250. Babbar SB, Gupta SC (1980) Chilling induced androgenesis in anthers of Petunia hybrida without any culture medium. Z Pflanzenphysiol 100:279–283

    Article  Google Scholar 

  251. Jain SM, Bhalla-Sarin N (1997) Haploidy in petunia. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 29, Current plant science and biotechnology in agriculture. Springer, Dordrecht, pp 53–71

    Chapter  Google Scholar 

  252. Bapat VA, Wenzel G (1982) In vitro haploid plantlet induction in Physalis ixocarpa brot. through microspore embryogenesis. Plant Cell Rep 1:154–156

    Article  CAS  PubMed  Google Scholar 

  253. Escobar-Guzmán R, Hernández-Godínez F, Martínez de la Vega O, Ochoa-Alejo N (2009) In vitro embryo formation and plant regeneration from anther culture of different cultivars of Mexican husk tomato (Physalis ixocarpa Brot.). Plant Cell Tiss Org Cult 96:181–189

    Article  Google Scholar 

  254. Lysenko EG, Sidorov VA (1985) The obtaining of S. bulbocastanum androgenic haploids and mesophyll protoplast culture. Tsitol Genet 19:433–436

    Google Scholar 

  255. Binding H, Mordhorst G (1984) Haploid Solanum dulcamara L.: shoot culture and plant regeneration from isolated protoplasts. Plant Sci Lett 35:77–79

    Article  Google Scholar 

  256. Zenkteler M (1973) In vitro development of embryos and seedlings from pollen grains of Solanum dulcamara. Z Pflanzenphysiol 69:189–192

    Article  Google Scholar 

  257. Pacheco-Sanchez M, Lozoya-Saldana H, Colinas-Leon MT (2003) Growth regulators and cold pretreatment on in vitro androgenesis of Solanum iopetalum L. Agrociencia 37:257–265

    Google Scholar 

  258. Sinha S, Roy RP, Jha KK (1979) Callus formation and shoot bud differentiation in anther culture of Solanum surattense. Can J Bot 57:2524–2527

    Article  Google Scholar 

  259. Jaiswal VS, Narayan P (1981) Induction of pollen embryoids in Solanum torvum Swartz. Curr Sci 50:998–999

    Google Scholar 

  260. Debata BK, Patnaik SN (1988) Induction of androgenesis in anther cultures of Solanum viarum Dunal. J Plant Physiol 133:124–125

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. Satish C. Maheshwari for sharing with the author some bits of the history of Datura anther culture s, and to Mr. Edgar García for the acquisition of some of the pictures shown in this review. This work was supported by grant AGL2014-55177 from Spanish MINECO to J.M.S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Seguí-Simarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Seguí-Simarro, J.M. (2016). Androgenesis in Solanaceae. In: Germana, M., Lambardi, M. (eds) In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, vol 1359. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3061-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3061-6_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3060-9

  • Online ISBN: 978-1-4939-3061-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics