Skip to main content

Somatic Embryogenesis in Broad-Leaf Woody Plants: What We Can Learn from Proteomics

  • Protocol
In Vitro Embryogenesis in Higher Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1359))

Abstract

Proteomic approaches have been used to understand several regulatory aspects of plant development. Somatic embryogenesis is one of those developmental pathways that have beneficiated from the integration of proteomics data to the understanding of the molecular mechanisms that control embryogenic competence acquisition, somatic embryo development and conversion into viable plants. Nevertheless, most of the results obtained are based on the traditional model systems, very often not easily compared with the somatic embryogenesis systems of economical relevant woody species. The aim of this work is to summarize some of the applications of proteomics in the understanding of particular aspects of the somatic embryogenesis process in broad-leaf woody plants (model and non-model systems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright PC, Noirela J, Owa S-Y, Fazeli A (2012) A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. Theriogenology 77:738–765

    Article  CAS  PubMed  Google Scholar 

  2. Hochholdinger F, Sauer M, Dembinsky D, Hoecker N, Muthreich N, Saleem M, Liu Y (2006) Proteomic dissection of plant development. Proteomics 6:4076–4083

    Article  CAS  PubMed  Google Scholar 

  3. Takáč T, Pechan T, Šamaj J (2011) Differential proteomics of plant development. J Proteomics 74:577–588

    Article  PubMed  Google Scholar 

  4. Reinert J (1958) Morphogenese und ihre kontrolle an Gewebekulturen aus Karroten. Naturwissenschaften 43:344–345

    Article  Google Scholar 

  5. Steward FC (1958) Growth and development of cultivated cells. III. Interpretations of the growth from free cell to carrot plant. Am J Bot 45:709–713

    Article  Google Scholar 

  6. Smertenko A, Bozhkov PV (2014) Somatic embryogenesis: life and death processes during apical–basal patterning. J Exp Bot 65:1343–1360

    Article  CAS  PubMed  Google Scholar 

  7. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849

    Article  CAS  PubMed  Google Scholar 

  8. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  Google Scholar 

  9. Eckert AJ, Wegrzyn JL, Cumbie WP, Goldfarb B, Huber DA, Tolstikov V, Fiehn O, Neale DB (2012) Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome. New Phytol 193:890–902

    Article  CAS  PubMed  Google Scholar 

  10. Liu W, Thummasuwan S, Sehgal SK, Chouvarine P, Peterson DG (2011) Characterization of the genome of bald cypress. BMC Genomics 12:553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Rigault P, Boyle B, Lepage P, Cooke JEK, Bousquet J, MacKay JJ (2011) A white spruce gene catalog for conifer genome analyses. Plant Physiol 157:14–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Grattapaglia D, Vaillancourt RE, Shepard M, Thumma BR, Foley W, Külheim C, Potts BM, Myburg AA (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508

    Article  Google Scholar 

  13. Kremer A, Abbott AG, Carlson JE, Manos PS, Plomion C, Sisco P, Staton ME, Ueno S, Vendramin GG (2012) Genomics of Fagaceae. Tree Genet Genomes 8:583–601

    Article  Google Scholar 

  14. Gmitter FG, Chen C, Machado MA, Alves de Souza A, Ollitrault P, Froehlicher Y, Shimizu T (2012) Citrus genomics. Tree Genet Genomes 8:611–626

    Article  Google Scholar 

  15. Troggio M, Gleave A, Salvi S, Chagné D, Cestaro A, Kumar S, Crowhurst RN, Gardiner SE (2012) Apple, from genome to breeding. Tree Genet Genomes 8:509–529

    Article  Google Scholar 

  16. Castell W, Ernst D (2012) Experimental ‘omics’ data in tree research: facing complexity. Trees 26:1723–1735

    Article  Google Scholar 

  17. Liska AJ, Shevchenko A (2003) Expanding the organismal scope of proteomics: cross-species protein identification by mass spectrometry and its implications. Proteomics 3:19–28

    Article  CAS  PubMed  Google Scholar 

  18. Mata J, Marguerat S, Bahler J (2005) Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci 30:506–514

    Article  CAS  PubMed  Google Scholar 

  19. Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27:354–377

    Article  CAS  PubMed  Google Scholar 

  20. Westermeier R, Naven T, Höpker H-R (2008) Proteomics in practice. A guide to successful experimental design, 2nd edn. Wiley, Weinheim, pp 38–272

    Google Scholar 

  21. Vâlcu C-M, Schlink K (2006) Efficient extraction of proteins from woody plant samples for two-dimensional electrophoresis. Proteomics 6:4166–4175

    Article  PubMed  Google Scholar 

  22. Damerval C, de Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  23. Mathesius U, Imin N, Chen HC, Djordjevic MA, Weinman JJ, Natera SHA, Morris AC, Kerim T, Paul S, Menzel C, Weiller GR, Rolfe BG (2002) Evaluation of proteome reference maps for cross-species identification of proteins by peptide mass fingerprinting. Proteomics 2:1288–1303

    Article  CAS  PubMed  Google Scholar 

  24. Lee J, Cooper B (2006) Alternative workflows for plant proteomic analysis. Mol Bio Syst 2:621–626

    CAS  Google Scholar 

  25. Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    Article  PubMed  Google Scholar 

  26. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed Central  PubMed  Google Scholar 

  27. Radoeva T, Weijers D (2014) A roadmap to embryo identity in plants. Trends Plant Sci 19:709–716

    Article  CAS  PubMed  Google Scholar 

  28. Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57

    Article  CAS  Google Scholar 

  29. von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova LH (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69:233–249

    Article  Google Scholar 

  30. Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Org Cult 86:285–301

    Article  Google Scholar 

  31. Chen SX, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  CAS  PubMed  Google Scholar 

  32. Gomez-Garay A, Lopez JA, Camafeita E, Bueno MA, Pintos B (2013) Proteomic perspective of Quercus suber somatic embryogenesis. J Proteomics 93:314–325

    Article  CAS  PubMed  Google Scholar 

  33. Pan Z, Guan R, Zhu S, Deng X (2009) Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 28:281–289

    Article  PubMed  Google Scholar 

  34. Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    Article  CAS  PubMed  Google Scholar 

  35. Noah AM, Niemenak N, Sunderhaus S, Haase C, Omokolo DN, Winkelmann T, Braun H-P (2013) Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L. J Proteomics 78:123–133

    Article  CAS  PubMed  Google Scholar 

  36. Fraga HPF, Agapito-Tenfena SZ, Caprestano CA, Nodari RO, Guerra MP (2013) Comparative proteomic analysis of off-type and normal phenotype somatic plantlets derived from somatic embryos of Feijoa (Acca sellowiana (O. Berg) Burret). Plant Sci 210:224–231

    Article  CAS  PubMed  Google Scholar 

  37. Correia SI, Vinhas R, Manadas B, Lourenço AS, Veríssimo P, Canhoto JM (2012) Comparative proteomic analysis of auxin-induced embryogenic and nonembryogenic tissues of the solanaceous tree Cyphomandra betacea (tamarillo). J Proteome Res 11:1666–1675

    Article  CAS  PubMed  Google Scholar 

  38. Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis – recent advances. Curr Sci 86:715–730

    Google Scholar 

  39. Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    Article  CAS  PubMed  Google Scholar 

  40. Rutledge RG, Stewart D, Caron S, Overton C, Boyle B, Mackay J, Klimaszewska K (2013) Potential link between biotic defense activation and recalcitrance to induction of somatic embryogenesis in shoot primordia from adult trees of white spruce (Picea glauca). Plant Biol 13:116

    Google Scholar 

  41. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Plant Physiol Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  42. Hvoslef-Eide A, Corke F (1997) Embryogenesis-specific protein changes in birch suspension cultures. Plant Cell Tiss Org Cult 51:35–41

    Article  CAS  Google Scholar 

  43. Zhang J, Mab H, Chen S, Ji M, Perl A, Kovacs L, Chen S (2009) Stress response proteins’ differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon – a proteomic approach. Plant Sci 177:103–113

    Article  CAS  Google Scholar 

  44. Guzmán-García E, Sánchez-Romero C, Panis B, Carpentier SC (2013) The use of 2D-DIGE to understand the regeneration of somatic embryos in avocado. Proteomics 13:3498–3507

    Article  PubMed  Google Scholar 

  45. De Jong AJ, Schmidt ED, de Vries SC (1993) Early events in higher plant embryogenesis. Plant Mol Biol 22:367–377

    Article  PubMed  Google Scholar 

  46. Pedroso MC, Hilbert JL, Vasseur J, Pais S (1995) Polypeptides associated with the induction of direct embryogenesis in Camellia japonica leaves. I. Identification of embryo-specific polypeptides. J Exp Bot 46:1579–1584

    Article  CAS  Google Scholar 

  47. Sallandrouze A, Faurobert M, El Maataoui M, Espagnac H (1999) Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L. Electrophoresis 20:1109–1119

    Article  CAS  PubMed  Google Scholar 

  48. Wilde D, Nelson WS, Booij H, De Vries SC, Thomas TL (1988) Gene-expression programs in embryogenic and non-embryogenic carrot cultures. Planta 176:205–211

    Article  CAS  PubMed  Google Scholar 

  49. Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  50. Tchorbadjieva M (2005) Protein markers for somatic embryogenesis. In: Mujib A, Samaj J (Eds) Somatic embryogenesis. Plant Cell Monogr 2:215–233

    Article  Google Scholar 

  51. Mukul-López HG, De-la-Peña C, Galaz-Ávalos RM, Loyola-Vargas VM (2012) Evaluation of the extracellular proteome profile during the somatic embryogenesis process of Coffea spp. J Mex Chem Soc 56:72–79

    Google Scholar 

  52. Correia SI, Cunha AE, Salgueiro L, Canhoto JM (2012) Somatic embryogenesis in tamarillo (Cyphomandra betacea): approaches to increase efficiency of embryo formation and plant development. Plant Cell Tiss Org Cult 109:143–152

    Article  CAS  Google Scholar 

  53. Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  Google Scholar 

  54. Vahdati K, Bayat S, Ebrahimzadeh H, Jarieth M, Mirmasoumi M (2008) Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tiss Org Cult 93:163–171

    Article  CAS  Google Scholar 

  55. Cangahuala-Inocente GC, Villarino A, Seixas D, Dumas-Gaudot E, Terenzi H, Guerra MP (2009) Differential proteomic analysis of developmental stages of Acca sellowiana somatic embryos. Acta Physiol Plant 31:501–514

    Article  CAS  Google Scholar 

  56. Balbuena TS, Silveira V, Junqueira M, Dias LLC, Santa-Catarina C, Shevchenko A, Floh EIS (2009) Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian Pine (Araucaria angustifolia). J Proteomics 72:337–352

    Article  CAS  PubMed  Google Scholar 

  57. Franco OL, Pelegrini PB, Gomes CPC, Souza A, Costa FT, Domont G, Quirino BF, Eira MT, Mehta A (2009) Proteomic evaluation of coffee zygotic embryos in two different stages of seed development. Plant Physiol Biochem 47:1046–1050

    Article  CAS  PubMed  Google Scholar 

  58. Zhen Y, Zhao Z-Z, Zheng R-H, Shi J (2012) Proteomic analysis of early seed development in Pinus massoniana L. Plant Physiol Biochem 54:97–104

    Article  CAS  PubMed  Google Scholar 

  59. Winkelmann T, Heintz D, Dorsselaer AV, Serek M, Braun HP (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224:508–519

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a postdoctoral research fellowship (SFRH/BPD/91461/2012) awarded to Sandra Correia by the Fundação para a Ciência e Tecnologia (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra I. Correia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Correia, S.I., Alves, A.C., Veríssimo, P., Canhoto, J.M. (2016). Somatic Embryogenesis in Broad-Leaf Woody Plants: What We Can Learn from Proteomics. In: Germana, M., Lambardi, M. (eds) In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, vol 1359. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3061-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3061-6_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3060-9

  • Online ISBN: 978-1-4939-3061-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics