Skip to main content

Embryogenesis and Plant Regeneration from Isolated Wheat Zygotes

  • Protocol
In Vitro Embryogenesis in Higher Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1359))

Abstract

Wheat zygotes can be mechanically isolated and cultivated to continue their development in vitro. Since each zygote needs to be individually isolated, only relatively few of these cells are available per experiment. To facilitate embryonic growth despite of this limitation, the zygotes are kept within a culture insert placed in a larger dish which itself contains embryogenic pollen cocultivated for continuous medium conditioning. This setup ensures that the two cultures, while being physically separated from one another, can exchange essential intercellular signal molecules passing through the bottom of the insert which is made of a permeable membrane. Thanks to the natural fate of zygotes, which is to form an embryo followed by the generation of a plant, embryogenesis and plant regeneration are achieved at much higher efficiency as compared to other single-cell systems. While the method is largely independent of the genotype, it allows for the nondestructive observation, manipulation, and individual analysis of zygotes and very young embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roué C (1994) Regeneration of fertile barley plants from mechanically isolated protoplasts of the fertilized egg cell. Plant Cell 6:531–543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Leduc N, Matthys-Rochon E, Rougier M, Mogensen L, Holm P, Magnard J-L, Dumas C (1996) Isolated maize zygotes mimic in vivo embryonic development and express microinjected genes when cultured in vitro. Dev Biol 177:190–203

    Article  CAS  PubMed  Google Scholar 

  3. Kumlehn J, Lörz H, Kranz E (1998) Differentiation of isolated wheat zygotes into embryos and normal plants. Planta 205:327–333

    Article  CAS  Google Scholar 

  4. Zhang J, Dong WH, Galli A, Potrykus I (1999) Regeneration of fertile plants from isolated zygotes of rice (Oryza sativa). Plant Cell Rep 19:128–132

    Article  CAS  Google Scholar 

  5. Kranz E, Lörz H (1993) In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5:739–746

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kovács M, Barnabas B, Kranz E (1995) Electro-fused isolated wheat (Triticum aestivum L.) gametes develop into multicellular structures. Plant Cell Rep 15:178–180

    PubMed  Google Scholar 

  7. Uchiumi T, Uemura I, Okamoto T (2007) Establishment of an in vitro fertilization system in rice (Oryza sativa L.). Planta 226:581–589

    Article  CAS  PubMed  Google Scholar 

  8. Kumlehn J, Lörz H, Kranz E (1999) Monitoring individual development of isolated wheat zygotes: a novel approach to study early embryogenesis. Protoplasma 208:156–162

    Article  Google Scholar 

  9. Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T (2005) The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). Plant J 41:660–672

    Article  CAS  PubMed  Google Scholar 

  10. Ohnishi Y, Hoshino R, Okamoto T (2014) Dynamics of male and female chromatin during karyogamy in rice zygotes. Plant Physiol 165:1533–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dresselhaus T, Hagel C, Lörz H, Kranz E (1996) Isolation of a full-length cDNA encoding calreticulin from a PCR library of in vitro zygotes of maize. Plant Mol Biol 31:23–34

    Article  CAS  PubMed  Google Scholar 

  12. Leljak-Levanic D, Juranic M, Sprunck S (2013) De novo zygotic transcription in wheat (Triticum aestivum L.) includes genes encoding small putative secreted peptides and a protein involved in proteasomal degradation. Plant Reprod 26:267–285

    Article  CAS  PubMed  Google Scholar 

  13. Sun MX, Zhao J, Xin HP, Qu LH, Ning J, Peng XB, Yan TT, Ma LG, Li SS (2011) Dynamic changes of transcript profiles after fertilization are associated with de novo transcription and maternal elimination in tobacco zygote, and mark the onset of the maternal-to-zygotic transition. Plant J 65:131–145

    Article  PubMed  Google Scholar 

  14. Abiko M, Maeda H, Tamura K, Hara-Nishimura I, Okamoto T (2013) Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up- or downregulated genes in zygotes after fertilization. J Exp Bot 64:1927–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Holm PB, Olsen O, Schnorf M, Brinch-Pedersen H, Knudsen S (2000) Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Res 9:21–32

    Article  CAS  PubMed  Google Scholar 

  16. Kumlehn J, Brettschneider R, Loerz H, Kranz E (1997) Zygote implantation to cultured ovules leads to direct embryogenesis and plant regeneration of wheat. Plant J 12:1473–1479

    Article  Google Scholar 

  17. Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261

    Article  CAS  PubMed  Google Scholar 

  18. Chu CC (1978) The N6 medium and its applications to anther culture of cereal crops. Proc. of the symposium plant tissue culture. Science Press, Beijing, China, pp 43–50

    Google Scholar 

  19. Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110

    Article  CAS  PubMed  Google Scholar 

  20. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  21. Kumlehn J, Kirik V, Czihal A, Altschmied L, Matzk F, Lörz H, Bäumlein H (2001) Parthenogenetic egg cells of wheat: cellular and molecular studies. Sex Plant Reprod 14:239–243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

I would like to thank my colleague Dr. Maia Gurushidze for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Kumlehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kumlehn, J. (2016). Embryogenesis and Plant Regeneration from Isolated Wheat Zygotes. In: Germana, M., Lambardi, M. (eds) In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, vol 1359. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3061-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3061-6_29

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3060-9

  • Online ISBN: 978-1-4939-3061-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics