Skip to main content

Somatic Embryogenesis in Two Orchid Genera (Cymbidium, Dendrobium)

  • Protocol
In Vitro Embryogenesis in Higher Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1359))

Abstract

The protocorm-like body (PLB) is the de facto somatic embryo in orchids. Here we describe detailed protocols for two orchid genera (hybrid Cymbidium Twilight Moon ‘Day Light’ and Dendrobium ‘Jayakarta’, D. ‘Gradita 31’, and D. ‘Zahra FR 62’) for generating PLBs. These protocols will most likely have to be tweaked for different cultivars as the response of orchids in vitro tends to be dependent on genotype. In addition to primary somatic embryogenesis, secondary (or repetitive) somatic embryogenesis is also described for both genera. The use of thin cell layers as a sensitive tissue assay is outlined for hybrid Cymbidium while the protocol outlined is suitable for bioreactor culture of D. ‘Zahra FR 62’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hossain MM, Kant R, Van PT, Winarto B, Zeng S-J, Teixeira da Silva JA (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32:69–139

    Article  CAS  Google Scholar 

  2. Teixeira da Silva JA (2013) Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floriculture Ornamental Biotech 7:1–52

    Google Scholar 

  3. Kauth PJ, Dutra D, Johnson TR, Stewart SL, Kane ME, Vendrame WA (2008) Techniques and applications of in vitro orchid seed germination. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, 1st edn. Global Science Books, Ltd, Isleworth, pp 375–391

    Google Scholar 

  4. Chen JT, Chang WC (2006) Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biol Plant 50:169–173

    Article  Google Scholar 

  5. Teixeira da Silva JA, Tanaka M (2006) Embryogenic callus, PLB and TCL paths to regeneration in hybrid Cymbidium (Orchidaceae). J Plant Growth Reg 25:203–210

    Article  CAS  Google Scholar 

  6. Teixeira da Silva JA, Tanaka M (2011) Thin cell layers: the technique. In: Davey M, Anthony P (eds) Plant cell culture: methods express. Wiley-Blackwell, Chichester, pp 25–37

    Google Scholar 

  7. Ng TB, Liu J-Y, Wong JH, Ye X-J, Sze SCW, Tong Y, Zhang KY (2012) Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol 93:1795–1803

    Article  CAS  PubMed  Google Scholar 

  8. Teixeira da Silva JA (2010) Thin cell layers: power-tool for organogenesis of floricultural crops. In: Mohan Jain MS, Ochatt SJ (eds) Methods in molecular biology: protocols for in vitro propagation of ornamental plants, vol 589. Humana, Totowa, NJ, pp 377–391

    Chapter  Google Scholar 

  9. Teixeira da Silva JA (2013) The role of thin cell layers in regeneration and transformation in orchids. Plant Cell Tiss Org Cult 113:149–161

    Article  CAS  Google Scholar 

  10. Teixeira da Silva JA, Dobránszki J (2013) Plant thin cell layers: a 40-year celebration. J Plant Growth Reg 32:922–943

    Article  CAS  Google Scholar 

  11. Winarto B (2012) In vitro proliferation study of three Indonesian Dendrobium’s protocorm-like bodies (PLBs) on different fertilizer media. National orchid proceedings, Indonesian Center for Horticultural Research and Development, Medan, North Sumatra, Indonesia, 21 June 2011, pp, 154–168

    Google Scholar 

  12. Winarto B, Rachmawati F, Santi A, Teixeira da Silva JA (2013) Mass propagation of Dendrobium ‘Zahra FR 62’', a new hybrid used for cut flowers, using bioreactor culture. Sci Hortic 161:170–180

    Article  CAS  Google Scholar 

  13. Winarto B, Rachmawati F, Wiendi NA (2013) Development of somatic embryogenesis technology bioreactor base in Dendrobium for mass propagation of qualified-seedling KKP3N research report. Indonesian Agency for Agriculture Research and Development, Jakarta, p 67

    Google Scholar 

  14. Winarto B, Rachmawati F (2013) In vitro propagation protocol of Dendrobium ‘Gradita 31’ via protocorm like bodies. Thammasat Int J Sci Technol 18(2):54–68

    Google Scholar 

  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  16. Vacin EF, Went EW (1949) Some pH changes in nutrient solution. Bot Gaz 110:605–613

    Article  CAS  Google Scholar 

  17. Teixeira da Silva JA (2012) New basal media for protocorm-like body and callus induction of hybrid Cymbidium. J Fruit Ornam Plant Res 20:127–133

    CAS  Google Scholar 

  18. Nitsch C, Nitsch JP (1967) The induction of flowering in vitro in stem segments of Plumbago indica L. Planta 72:371–384

    Article  CAS  PubMed  Google Scholar 

  19. Teixeira da Silva JA, Dobránszki J (2013) How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Sci Hortic 159:59–66

    Article  Google Scholar 

  20. Teixeira da Silva JA (2013) Impact of paper bridges, activated charcoal, and antioxidants on growth and development of protocorm-like bodies of hybrid Cymbidium. In Vitro Cell Dev Biol Plant 49:414–420

    Article  CAS  Google Scholar 

  21. Thomas DT (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631

    Article  CAS  PubMed  Google Scholar 

  22. Hossain MM, Sharma M, Teixeira da Silva JA, Pathak P (2010) Seed germination and tissue culture of Cymbidium giganteum Wall. ex Lindl. Sci Hortic 123:479–487

    Article  CAS  Google Scholar 

  23. Teixeira da Silva JA (2013) The effect of ethylene inhibitors (AgNO3, AVG), an ethylene-liberating compound (CEPA) and aeration on the formation of protocorm-like bodies of hybrid Cymbidium (Orchidaceae). Front Biol 8:606–610

    Article  CAS  Google Scholar 

  24. Teixeira da Silva JA (2013) Smoke-saturated water from five grasses growing in Japan inhibits in vitro protocorm-like body formation in hybrid Cymbidium. J Plant Dev 20:63–70

    Google Scholar 

  25. Teixeira da Silva JA, Uthairatanakij A, Obsuwan K, Shimasaki K, Tanaka M (2013) Elicitors (chitosan and hyaluronic acid) affect protocorm-like body formation in hybrid Cymbidium. Floriculture Ornamental Biotech 7:77–81

    Google Scholar 

  26. Teixeira da Silva JA (2012) Jasmonic acid, but not salicylic acid, improves PLB formation of hybrid Cymbidium. Plant Tissue Cult Biotechnol 22:187–192

    Google Scholar 

  27. Teixeira da Silva JA (2012) Impact of methyl jasmonate on PLB formation of hybrid Cymbidium (Orchidaceae). J Plant Dev 19:47–52

    Google Scholar 

  28. Van PT, Teixeira da Silva JA, Ham LH, Tanaka M (2012) Effects of permanent magnetic fields on growth of Cymbidium and Spathiphyllum. In Vitro Cell Dev Biol Plant 48:225–232

    Article  Google Scholar 

  29. Teixeira da Silva JA, Tanaka M (2009) Impact of gelling agent and alternative medium additives on hybrid Cymbidium protocorm-like body and callus formation. Floriculture Ornamental Biotech 3:56–58

    Google Scholar 

  30. Van PT, Tanaka M, Teixeira da Silva JA (2010) Gelling agent affects hybrid Cymbidium plantlet growth. Floriculture Ornamental Biotech 4(1):45–47

    Google Scholar 

  31. Teixeira da Silva JA, Tanaka M (2009) Culture vessel affects hybrid Cymbidium protocorm-like body and callus formation. Floriculture Ornamental Biotech 3:53–55

    Google Scholar 

  32. Teixeira da Silva JA, Tanaka M (2009) Optimization of particle bombardment conditions for hybrid Cymbidium. Transgenic Plant J 3(1):119–122

    Google Scholar 

  33. Teixeira da Silva JA, Tanaka M (2011) Optimization of particle bombardment conditions for hybrid Cymbidium: part II. Transgenic Plant J 5:78–82

    Google Scholar 

  34. Nhut DT, Tien TNT, Huong MTN, Hien NTH, Huyen PX, Luan VQ, Le BV, Teixeira da Silva JA (2005) Artificial seeds for preservation and propagation of Cymbidium spp. Propag Ornam Plants 5:67–73

    Google Scholar 

  35. Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology – a complete synthesis. Biotechnol Adv 31:186–207

    Article  CAS  PubMed  Google Scholar 

  36. Teixeira da Silva JA (2012) Production of synseed for hybrid Cymbidium using protocorm-like bodies. J Fruit Ornam Plant Res 20:135–146

    Google Scholar 

  37. Teixeira da Silva JA (2013) Cryopreservation of hybrid Cymbidium protocorm-like bodies by encapsulation-dehydration and vitrification: impact on explant survival and success of synseed germination. In Vitro Cell Dev Biol Plant 49:690–698

    Article  Google Scholar 

  38. Begum AA, Tamaki M, Kako S (1994) Somatic embryogenesis in Cymbidium through in vitro culture of inner tissue of protocorm-like bodies. J Jpn Soc Hortic Sci 63:663–673

    Article  CAS  Google Scholar 

  39. Malabadi RB, Teixeira da Silva JA, Nataraja K, Mulgund GS (2008) Shoot tip transverse thin cell layers and 24-epibrassinolide in the micropropagation of Cymbidium bicolor Lindl. Floriculture Ornamental Biotech 2:44–48

    Google Scholar 

  40. Teixeira da Silva JA, Chan M-T, Sanjaya, Chai M-L, Tanaka M (2006) Priming abiotic factors for optimal hybrid Cymbidium (Orchidaceae) PLB and callus induction, plantlet formation, and their subsequent cytogenetic stability analysis. Sci Hortic 109:368–378

    Article  Google Scholar 

  41. Teixeira da Silva JA, Singh N, Tanaka M (2006) Priming biotic factors for optimal protocorm-like body and callus induction in hybrid Cymbidium (Orchidaceae), and assessment of cytogenetic stability in regenerated plantlets. Plant Cell Tiss Org Cult 84:135–144

    Article  Google Scholar 

  42. Teixeira da Silva JA, Yam T, Fukai S, Nayak N, Tanaka M (2005) Establishment of optimum nutrient media for in vitro propagation of Cymbidium Sw. (Orchidaceae) using protocorm-like body segments. Propag Ornamental Plants 5:129–136

    Google Scholar 

  43. Van PT, Teixeira da Silva JA, Tanaka M (2012) How does choice of substrate and culture conditions affect the growth and development of Cymbidium cv. Green Planet ‘Energy Star’ protocorm-like bodies? Eur J Hortic Sci 77:219–225

    CAS  Google Scholar 

  44. Teixeira da Silva JA (2013) Ammonium to nitrate ratio affects PLB formation in vitro of hybrid Cymbidium. J Ornam Hortic Plants 3:155–160

    Google Scholar 

  45. Teixeira da Silva JA, Giang DTT, Chan M-T, Sanjaya, Norikane A, Chai M-L, Chico-Ruíz J, Penna S, Granström T, Tanaka M (2007) The influence of different carbon sources, photohetero-, photoauto- and photomixotrophic conditions on protocorm-like body organogenesis and callus formation in thin cell layer culture of hybrid Cymbidium (Orchidaceae). Orchid Sci Biotechnol 1:15–23

    Google Scholar 

  46. Teixeira da Silva JA, Dobránszki J (2011) The plant growth correction factor. I. The hypothetical and philosophical basis. Int J Plant Dev Biol 5:73–74

    Google Scholar 

  47. Teixeira da Silva JA, Dobránszki J (2014) Dissecting the concept of the thin cell layer: theoretical basis and practical application of the plant growth correction factor to apple, Cymbidium and chrysanthemum. J Plant Growth Reg 33:881–895

    Article  CAS  Google Scholar 

  48. Kaewubon P, Hutadilok-Towatana N, Teixeira da Silva JA, Meesawat U (2015) Ultrastructural and biochemical alterations during browning of Pigeon orchid (Dendrobium crumenatum Swartz) callus. Plant Cell Tiss Org Cult 121:53–69

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Elsevier Ltd. for copyright permission to re-use photos in Fig. 1a, c, and f from [12]. The authors also thank Thammasat International Journal of Science and Technology for copyright permission to reuse the photo in Fig. 1b from [14].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime A. Teixeira da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Teixeira da Silva, J.A., Winarto, B. (2016). Somatic Embryogenesis in Two Orchid Genera (Cymbidium, Dendrobium). In: Germana, M., Lambardi, M. (eds) In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, vol 1359. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3061-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3061-6_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3060-9

  • Online ISBN: 978-1-4939-3061-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics