Skip to main content

Bioreactors for Plant Embryogenesis and Beyond

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1359))

Abstract

A variety of different bioreactors have been developed for use in initiating and cultivating somatic embryos. The various designs for embryogenesis and culture are critically evaluated here. Bioreactor optimization and operation methods are also described along with recommendations for use based on desired outcome.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss Org Cult 81:287–300

    Article  Google Scholar 

  2. Weathers PJ, Towler MJ, Xu JF (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351

    Article  CAS  PubMed  Google Scholar 

  3. Weathers PJ, Towler MJ, Wyslouzil BE (2012) Beyond cells: culturing complex plant tissues for the production of metabolites and elite genotypes. In: El-Mansi EMT, Bryce CFA, Demain AL, Allman AR (eds) Fermentation microbiology and biotechnology, 3rd edn. CRC Press, Boca Raton, FL, pp 295–312

    Google Scholar 

  4. Atkinson B, Mavituna F (1991) Biochemical engineering and biotechnology handbook, 2nd edn. Macmillan, Basingstoke

    Google Scholar 

  5. Geankopolis CJ (1993) Transport processes and unit operations, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  6. Fisichella M, Morini S (2003) Somatic embryo and root regeneration from quince leaves cultured in ventilated vessels or under different oxygen and carbon dioxide levels. In Vitro Cell Dev Biol Plant 39:402–408

    Article  Google Scholar 

  7. Carman JG (1988) Improved somatic embryogenesis in wheat by partial simulation of the in-ovulo oxygen, growth-regulator and desiccation environments. Planta 175:417–424

    Article  CAS  PubMed  Google Scholar 

  8. Jay V, Genestier S, Courduroux J-C (1992) Bioreactor studies on the effect of dissolved oxygen concentrations on growth and differentiation of carrot (Daucus carota L.) cell cultures. Plant Cell Rep 11:605–608

    Article  CAS  PubMed  Google Scholar 

  9. Shigeta J, Sato KJ, Mii M (1996) Effects of initial cell density, pH and dissolved oxygen on bioreactor production of carrot somatic embryos. Plant Sci 115:109–114

    Article  CAS  Google Scholar 

  10. Shimazu T, Kurata K (1999) Relationship between production of carrot somatic embryos and dissolved oxygen concentration in liquid culture. Plant Cell Tiss Org Cult 57:29–38

    Article  Google Scholar 

  11. Rosnow J, Offermann S, Park J, Okita T, Tarlyn N, Dhingra A, Edwards G (2011) In vitro cultures and regeneration of Bienertia sinuspersici (Chenopodiaceae) under increasing concentrations of sodium chloride and carbon dioxide. Plant Cell Rep 30:1541–1553

    Article  CAS  PubMed  Google Scholar 

  12. Barbón R, Jiménez E, Preil W (2008) Influence of in vitro environment on somatic embryogenesis of Coffea arabica L. cv. Caturra rojo: the effects of carbon dioxide on embryogenic cell suspensions. Plant Cell Tiss Org Cult 95:155–161

    Article  Google Scholar 

  13. Buddendorfjoosten JMC, Woltering EJ (1994) Components of the gaseous environment and their effects on plant growth and development in-vitro. Plant Growth Regul 15:1–16

    Article  CAS  Google Scholar 

  14. Chung C-M, Bae KKA, Masatoshi (2000) Effects of CO2 enrichment on the differentiation and growth in tissue culture of Panax ginseng C.A.Meyer. Korean J Med Crop Sci 8:14–20

    Google Scholar 

  15. Huang SY, Chan HS, Wang TT (2006) Induction of somatic embryos of celery by control of gaseous compositions and other physical conditions. Plant Growth Regul 49:219–227

    Article  CAS  Google Scholar 

  16. Takamura T, Imose Y, Tanaka M (2010) Effect of CO2 enrichment on in vitro plant regeneration through somatic embryogenesis in cyclamen (Cyclamen persicum mill.). Kagawa Daigaku Nogakubu Gakujutsu Hokoku 62:1–4

    CAS  Google Scholar 

  17. Hohe A, Winkelmann T, Schwenkel HG (1999) CO2 accumulation in bioreactor suspension cultures of Cyclamen persicum Mill. and its effect on cell growth and regeneration of somatic embryos. Plant Cell Rep 18:863–867

    Article  CAS  Google Scholar 

  18. El Meskaoui A, Tremblay F (1999) Effects of sealed and vented gaseous microenvironments on the maturation of somatic embryos of black spruce with a special emphasis on ethylene. Plant Cell Tiss Org Cult 56:201–209

    Article  Google Scholar 

  19. de Feria M, Jimenez E, Barbon R, Capote A, Chavez M, Quiala E (2003) Effect of dissolved oxygen concentration on differentiation of somatic embryos of Coffea arabica cv. Catimor 9722. Plant Cell Tiss Org Cult 72:1–6

    Article  Google Scholar 

  20. Kvaalen H, Arnold S (1991) Effects of various partial pressures of oxygen and carbon dioxide on different stages of somatic embryogenesis in Picea abies. Plant Cell Tiss Org Cult 27:49–57

    Article  CAS  Google Scholar 

  21. Hohe A, Winkelmann T, Schwenkel HG (1999) The effect of oxygen partial pressure in bioreactors on cell proliferation and subsequent differentiation of somatic embryos of Cyclamen persicum. Plant Cell Tiss Org Cult 59:39–45

    Article  CAS  Google Scholar 

  22. Nissen P (1994) Stimulation of somatic embryogenesis in carrot by ethylene: effects of modulators of ethylene biosynthesis and action. Physiol Plant 92:397–403

    Article  CAS  Google Scholar 

  23. Jha A, Dahleen L, Suttle J (2007) Ethylene influences green plant regeneration from barley callus. Plant Cell Rep 26:285–290

    Article  CAS  PubMed  Google Scholar 

  24. Liu J-Z, Ge Y-M, Zhou Y-F, Tian G-M (2010) Effects of elevated CO2 on growth and nutrient uptake of Eichhornia crassipes under four different nutrient levels. Water Air Soil Pollut 212:387–394

    Article  CAS  Google Scholar 

  25. Kępczyńska E, Zielińska S (2011) Disturbance of ethylene biosynthesis and perception during somatic embryogenesis in Medicago sativa L. reduces embryos’ ability to regenerate. Acta Physiol Plant 33:1969–1980

    Article  Google Scholar 

  26. Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tiss Org Cult 107:25–33

    Article  CAS  Google Scholar 

  27. Huang X-L, Li X-J, Li Y, Huang L-Z (2001) The effect of AOA on ethylene and polyamine metabolism during early phases of somatic embryogenesis in Medicago sativa. Physiol Plant 113:424–429

    Article  CAS  PubMed  Google Scholar 

  28. Kępczyńska E, Ruduś I, Kępczyński J (2009) Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L. Plant Growth Regul 59:63–73

    Article  Google Scholar 

  29. George EF, Hall MA, De Klerk G-J (2008) Plant growth regulators III: gibberellins, ethylene, abscisic acid, their analogues and inhibitors; miscellaneous compounds. In: George EF, Hall MA, Klerk G-JD (eds) Plant propagation by tissue culture, vol 1, 3rd edn. Springer Exegetics, Basingstoke, pp 227–281

    Google Scholar 

  30. Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  Google Scholar 

  31. El Meskaoui A, Tremblay FM (2001) Involvement of ethylene in the maturation of black spruce embryogenic cell lines with different maturation capacities. J Exp Bot 52:761–769

    PubMed  Google Scholar 

  32. Pérez-Jiménez M, Cantero-Navarro E, Pérez-Alfocea F, Le-Disquet I, Guivarc’h A, Cos-Terrer J (2014) Relationship between endogenous hormonal content and somatic organogenesis in callus of peach (Prunus persica L. Batsch) cultivars and Prunus persica × Prunus dulcis rootstocks. J Plant Physiol 171:619–624

    Article  PubMed  Google Scholar 

  33. El Meskaoui A, Desjardins Y, Tremblay FM (2000) Kinetics of ethylene biosynthesis and its effects during maturation of white spruce somatic embryos. Physiol Plant 109:333–342

    Article  Google Scholar 

  34. Roustan JP, Latche A, Fallot J (1989) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel. Plant Cell Rep 8:182–185

    Article  CAS  PubMed  Google Scholar 

  35. Roustan J-P, Latché A, Fallot J (1994) Role of ethylene on induction and expression of carrot somatic embryogenesis: relationship with polyamine metabolism. Plant Sci 103:223–229

    Article  CAS  Google Scholar 

  36. Roustan JP, Latche A, Fallot J (1990) Inhibition of ethylene production and stimulation of carrot somatic embryogenesis by salicylic acid. Biol Plant 32:273–276

    Article  CAS  Google Scholar 

  37. Wang YS, Tong Y, Li YF, Zhang Y, Zhang J, Feng JY, Feng H (2011) High frequency plant regeneration from microspore-derived embryos of ornamental kale (Brassica oleracea L. var. acephala). Sci Hortic 130:296–302

    Article  CAS  Google Scholar 

  38. Hosseini SS, Mashayekni K, Alizadeh M (2009) Ethylene production and somatic embryogenesis of carrot explants as affected by salicylic acid treatments. Am Euras J Agric Environ Sci 6:539–545

    CAS  Google Scholar 

  39. Kumar PP, Lakshmanan P, Thorpe TA (1998) Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev Biol Plant 34:94–103

    Article  CAS  Google Scholar 

  40. Mariateresa C, Maria CSC, Giuseppe C (2014) Influence of ozone treatments on in vitro propagation of Aloe barbadensis in continuous immersion bioreactor. Ind Crop Prod 55:194–201

    Article  CAS  Google Scholar 

  41. Zobayed SMA, Armstrong J, Armstrong W (2001) Micropropagation of potato: evaluation of closed, diffusive and forced ventilation on growth and tuberization. Ann Bot 87:53–59

    Article  CAS  Google Scholar 

  42. Xiao YL, Lok YH, Kozai T (2003) Photoautotrophic growth of sugarcane plantlets in vitro as affected by photosynthetic photon flux and vessel air exchanges. In Vitro Cell Dev Biol Plant 39:186–192

    Article  Google Scholar 

  43. Thongbai P, Kozai T, Ohyama K (2010) CO2 and air circulation effects on photosynthesis and transpiration of tomato seedlings. Sci Hortic 126:338–344

    Article  Google Scholar 

  44. Chen UC, Hsia CN, Agrawal DC, Tsay HS (2006) Influence of ventilation closures on plant growth parameters, acclimation and anatomy of leaf surface in Scrophularia yoshimurae Yamazaki - a medicinal plant native to Taiwan. Bot Stud 47:259–266

    Google Scholar 

  45. Tsay HS, Lee CY, Agrawal DC, Basker S (2006) Influence of ventilation closure, gelling agent and explant type on shoot bud proliferation and hyperhydricity in Scrophularia yoshimurae – a medicinal plant. In Vitro Cell Dev Biol Plant 42:445–449

    Article  CAS  Google Scholar 

  46. Fujiwara K, Kozai T (1995) Physical microenvironment and its effects. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Springer, Amsterdam, pp 319–369

    Chapter  Google Scholar 

  47. Mohamed MAH, Alsadon AA (2010) Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Sci Hortic 123:295–300

    Article  CAS  Google Scholar 

  48. Chen CC, Chen JNJ (2002) Measurement of gas exchange rates in plant tissue culture vessels. Plant Cell Tiss Org Cult 71:103–109

    Article  CAS  Google Scholar 

  49. Cui Y-Y, Hahn E-J, Kozai T, Paek K-Y (2000) Number of air exchanges, sucrose concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro. Plant Cell Tiss Org Cult 62:219–226

    Article  CAS  Google Scholar 

  50. Yann LK, Nornadia K, Jin CS, Izzati N, Bhatt A, Ning SP, Lai-Keng C (2010) Effect of perforations of culture vessel cap on growth and leaf microstructure of in vitro plantlets of Artemisia annua L. J Med Plant Res 4:2273–2282

    Google Scholar 

  51. Shim S-W, Hahn E-J, Paek K-Y (2003) In vitro and ex vitro growth of grapevine rootstock ‘5BB’ as influenced by number of air exchanges and the presence or absence of sucrose in culture media. Plant Cell Tiss Org Cult 75:57–62

    Article  Google Scholar 

  52. Afreen F, Zobayed SMA, Kozai T (2005) Development of photoautotrophy in somatic embryos enables mass production of clonal transplants liquid culture systems for in vitro plant propagation. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Amsterdam, pp 323–335

    Chapter  Google Scholar 

  53. Ducos JP, Chantanumat P, Vuong P, Lambot C, Pétiard V (2007) Mass propagation of robusta clones: disposable plastic bags for pregermination of somatic embryos by temporary immersion. Acta Hort 764:33–40

    Article  CAS  Google Scholar 

  54. Ducos JP, Labbe G, Lambot C, Pétiard V (2007) Pilot scale process for the production of pre-germinated somatic embryos of selected robusta (Coffea canephora) clones. In Vitro Cell Dev Biol Plant 43:652–659

    Article  Google Scholar 

  55. Zobayed SMA, Afreen F, Xiao Y, Kozai T (2004) Recent advancement in research on photoautotrophic micropropagation using large culture vessels with forced ventilation. In Vitro Cell Dev Biol Plant 40:450–458

    Article  Google Scholar 

  56. Xiao YL, Niu GH, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tiss Org Cult 105:149–158

    Article  CAS  Google Scholar 

  57. Kozai T, Kubota C, Zobayed S, Nguyen Q, Afreen-Zobayed F, Heo J (2000) Developing a mass-propagation system of woody plants. Paper presented at the Challenge of plant and agriculture sciences to the crisis of biosphere on the earth in the 21st century

    Google Scholar 

  58. Zobayed SMA, Kubota C, Kozai T (1999) Development of a forced ventilation micropropagation system for large-scale photoautotrophic culture and its utilization in Sweet potato. In Vitro Cell Dev Biol Plant 35:350–355

    Article  Google Scholar 

  59. Zobayed SMA (2000) In vitro propagation of Lagerstroemia spp. from nodal explants and gaseous composition in the culture headspace. Environ Contr Biol 38:1–11

    Article  Google Scholar 

  60. Xiao Y, Kozai T (2006) Photoautotrophic growth and net photosynthetic rate of Sweet potato plantlets in vitro as affected by the number of air exchanges of the vessel and type of supporting material. Tsinghua Sci Technol 11:481–489

    Article  CAS  Google Scholar 

  61. Hvoslef-Eide AK, Olsen OAS, Lyngved R, Munster C, Heyerdahl PH (2005) Bioreactor design for propagation of somatic embryos. Plant Cell Tiss Org Cult 81:265–276

    Article  Google Scholar 

  62. Moorhouse S, Wilson G, Hennerty M, Selby C, Saoir S (1996) A plant cell bioreactor with medium-perfusion for control of somatic embryogenesis in liquid cell suspensions. Plant Growth Regul 20:53–56

    Article  CAS  Google Scholar 

  63. Styer DJ (1985) Bioreactor technology for plant propagation. In: Henke R, Hughes K, Constantin M, Hollaender A, Wilson C (eds) Tissue culture in forestry and agriculture, vol 32. Basic life sciences, vol 32. Springer US, New York, NY, pp 117–130

    Chapter  Google Scholar 

  64. Sorvari S, Mäkeläinen R, Ahanen K, Toldi O (2005) Membranes to reduce adherence of somatic embryos to the cell lift impeller of a bioreactor. In: Preil W, Hvoslef-Eide A (eds) Liquid culture systems for in vitro plant propagation. Springer, Amsterdam, pp 117–125

    Chapter  Google Scholar 

  65. Shohael AM, Murthy HN, Paek KY (2014) Pilot-scale culture of somatic embryos of Eleutherococcus senticosus in airlift bioreactors for the production of eleutherosides. Biotechnol Lett 1–7

    Google Scholar 

  66. D'Onofrio C, Morini S, Bellocchi G (1998) Effect of light quality on somatic embryogenesis of quince leaves. Plant Cell Tiss Org Cult 53:91–98

    Article  Google Scholar 

  67. Rodríguez-Sahagún A, Acevedo-Hernández G, Rodríguez-Domínguez JM, Rodríguez-Garay B, Cervantes-Martínez J, Castellanos-Hernández OA (2011) Effect of light quality and culture medium on somatic embryogenesis of Agave tequilana Weber var. Azul. Plant Cell Tiss Org Cult 104:271–275

    Article  Google Scholar 

  68. Michler C, Lineberger RD (1987) Effects of light on somatic embryo development and abscisic levels in carrot suspension cultures. Plant Cell Tiss Org Cult 11:189–207

    Article  Google Scholar 

  69. Ducos J-P, Lambot C, Pétiard V (2007) Bioreactors for coffee mass propagation by somatic embryogenesis. Int J Plant Dev Biol 1:1–12

    Google Scholar 

  70. Afreen F, Zobayed SMA, KozaiI T (2002) Photoautotrophic culture of Coffea arabusta somatic embryos: photosynthetic ability and growth of different stage embryos. Ann Bot 90:11–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Ducos JP, Terrier B, Courtois D, Pétiard V (2008) Improvement of plastic-based disposable bioreactors for plant science needs. Phytochem Rev 7:607–613

    Article  CAS  Google Scholar 

  72. Liu CZ, Towler MJ, Medrano G, Cramer CL, Weathers PJ (2009) Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnol Bioeng 102:1074–1086

    Article  CAS  PubMed  Google Scholar 

  73. Fei L, Weathers P (2014) From cells to embryos to rooted plantlets in a mist bioreactor. Plant Cell Tiss Org Cult 116:37–46

    Article  CAS  Google Scholar 

  74. Gómez Kosky R, de Feria Silva M, Posada Pérez L, Gilliard T, Bernal Martínez F, Reyes Vega M, Chávez Milian M, Quiala Mendoza E (2002) Somatic embryogenesis of the banana hybrid cultivar FHIA-18 (AAAB) in liquid medium and scaled-up in a bioreactor. Plant Cell Tiss Org Cult 68:21–26

    Article  Google Scholar 

  75. Jiménez JA, Alonso-Blázquez N, López-Vela D, Celestino C, Toribio M, Alegre J (2011) Influence of culture vessel characteristics and agitation rate on gaseous exchange, hydrodynamic stress, and growth of embryogenic cork oak (Quercus suber L.) cultures. In Vitro Cell Dev Biol Plant 47:578–588

    Article  Google Scholar 

  76. Etienne-Barry D, Bertrand B, Vasquez N, Etienne H (1999) Direct sowing of Coffea arabica somatic embryos mass-produced in a bioreactor and regeneration of plants. Plant Cell Rep 19:111–117

    Article  CAS  Google Scholar 

  77. Kang T-J, Lee W-S, Choi E-G, Kim J-W, Kim B-G, Yang M-S (2006) Mass production of somatic embryos expressing Escherichia coli heat-labile enterotoxin B subunit in Siberian ginseng. J Biotechnol 121:124–133

    Article  CAS  PubMed  Google Scholar 

  78. You X, Tan X, Dai J, Li Y, Choi Y (2012) Large-scale somatic embryogenesis and regeneration of Panax notoginseng. Plant Cell Tiss Org Cult 108:333–338

    Article  CAS  Google Scholar 

  79. Chin WYW, Annuar MSM, Tan BC, Khalid N (2014) Evaluation of a laboratory scale conventional shake flask and a bioreactor on cell growth and regeneration of banana cell suspension cultures. Sci Hortic 172:39–46

    Article  CAS  Google Scholar 

  80. Misra BB, Dey S (2013) Culture of East Indian sandalwood tree somatic embryos in air-lift bioreactors for production of santalols, phenolics and arabinogalactan proteins. AoB Plants 5

    Google Scholar 

  81. Mordocco AM, Brumbley JA, Lakshmanan P (2009) Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev Biol Plant 45:450–457

    Article  CAS  Google Scholar 

  82. Etienne H, Lartaud M, Michaux-Ferriére N, Carron MP, Berthouly M, Teisson C (1997) Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg.) using the temporary immersion technique. In Vitro Cell Dev Biol Plant 33:81–87

    Article  Google Scholar 

  83. Niemenak N, Saare-Surminski K, Rohsius C, Ndoumou D, Lieberei R (2008) Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep 27:667–676

    Article  CAS  PubMed  Google Scholar 

  84. Heringer AS, Steinmacher DA, Fraga HPF, Vieira LN, Montagna T, Quinga LAP, Quoirin MGG, Jiménez VM, Guerra MP (2014) Improved high-efficiency protocol for somatic embryogenesis in Peach Palm (Bactris gasipaes Kunth) using RITA® temporary immersion system. Sci Hortic 179:284–292

    Article  CAS  Google Scholar 

  85. Kong L, Holtz CT, Nairn CJ, Houke H, Powell WA, Baier K, Merkle SA (2014) Application of airlift bioreactors to accelerate genetic transformation in American chestnut. Plant Cell Tiss Org Cult 117:39–50

    Article  CAS  Google Scholar 

  86. Yang J, Zhou C, Liu L, Jia D, Yin Z, Kim M, Yu C, Li C (2012) High conversion frequency of germinated somatic embryos of Siberian ginseng (Eleutherococcus senticosus Maxim) using a bubble column bioreactor. Plant Cell Tiss Org Cult 110:289–298

    Article  Google Scholar 

  87. Ho C-W, Jian W-T, Lai H-C (2006) Plant regeneration via somatic embryogenesis from suspension cell cultures of Lilium × formolongi hort. using a bioreactor system. In Vitro Cell Dev Biol Plant 42:240–246

    Article  CAS  Google Scholar 

  88. Ingram B, Mavituna F (2000) Effect of bioreactor configuration on the growth and maturation of Picea sitchensis somatic embryo cultures. Plant Cell Tiss Org Cult 61:87–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Weathers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fei, L., Weathers, P. (2016). Bioreactors for Plant Embryogenesis and Beyond. In: Germana, M., Lambardi, M. (eds) In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, vol 1359. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3061-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3061-6_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3060-9

  • Online ISBN: 978-1-4939-3061-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics