Skip to main content

Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1355))

Abstract

Magnetic nanocomposites are hybrid structures consisting of an iron oxide (Fe3O4/γ-Fe2O3) superparamagnetic core and a coating shell which presents affinity for a specific target molecule. Within the scope of phosphopeptide enrichment, the magnetic core is usually first functionalized with an intermediate layer of silica or carbon to improve dispersibility and increase specific area, and then with an outer layer of a phosphate-affinity material. Fe3O4-coating materials include metal oxides, rare earth metal-based compounds, immobilized-metal ions, polymers, and many others. This chapter provides a generic overview of the different materials that can be found in literature and their advantages and drawbacks.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. López E, Cho W (2012) Phosphoproteomics and lung cancer research. Int J Mol Sci 13:12287–12314

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rigbolt KT, Blagoev B (2012) Quantitative phosphoproteomics to characterize signaling networks. Semin Cell Dev Biol 23:863–871

    Article  CAS  PubMed  Google Scholar 

  3. Mann M, Ong S-E, Grønborg M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261–268

    Article  CAS  PubMed  Google Scholar 

  4. Engholm-Keller K, Larsen MR (2013) Technologies and challenges in large-scale phosphoproteomics. Proteomics 13:910–931

    Article  CAS  PubMed  Google Scholar 

  5. Harsha H, Pandey A (2010) Phosphoproteomics in cancer. Mol Oncol 4:482–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Iqbal K, Liu F, Gong C-X et al (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Braithwaite SP, Stock JB, Mouradian MM (2012) α-Synuclein phosphorylation as a therapeutic target in Parkinson’s disease. Rev Neurosci 23:191–198

    Article  CAS  PubMed  Google Scholar 

  8. Kotlo K, Johnson KR, Grillon JM et al (2012) Phosphoprotein abundance changes in hypertensive cardiac remodeling. J Proteomics 77:1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jaros JA, Martins-de-Souza D, Rahmoune H et al (2012) Protein phosphorylation patterns in serum from schizophrenia patients and healthy controls. J Proteomics 76:43–55

    Article  CAS  PubMed  Google Scholar 

  10. Nita-Lazar A, Saito-Benz H, White FM (2008) Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics 8:4433–4443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Eyrich B, Sickmann A, Zahedi RP (2011) Catch me if you can: mass spectrometry‐based phosphoproteomics and quantification strategies. Proteomics 11:554–570

    Article  CAS  PubMed  Google Scholar 

  12. Palumbo AM, Smith SA, Kalcic CL et al (2011) Tandem mass spectrometry strategies for phosphoproteome analysis. Mass Spectrom Rev 30:600–625

    Article  CAS  PubMed  Google Scholar 

  13. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol 49:199–221

    Article  CAS  Google Scholar 

  14. Beltran L, Cutillas PR (2012) Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 43:1009–1024

    Article  CAS  PubMed  Google Scholar 

  15. Batalha IL, Lowe CR, Roque AC (2012) Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends Biotechnol 30:100–110

    Article  CAS  PubMed  Google Scholar 

  16. Villén J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3:1630–1638

    Article  PubMed Central  PubMed  Google Scholar 

  17. Zarei M, Sprenger A, Metzger F et al (2011) Comparison of ERLIC–TiO2, HILIC–TiO2, and SCX–TiO2 for global phosphoproteomics approaches. J Proteome Res 10:3474–3483

    Article  CAS  PubMed  Google Scholar 

  18. Nühse TS, Stensballe A, Jensen ON et al (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    Article  PubMed  Google Scholar 

  19. Motoyama A, Xu T, Ruse CI et al (2007) Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem 79:3623–3634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Pina AS, Batalha ÍL, Roque ACA (2014) Affinity tags in protein purification and peptide enrichment: an overview. In: Labrou NE (ed) Protein downstream processing, vol 1129, Methods in molecular biology. Humana Press, Totowa, NJ, pp 147–168. doi:10.1007/978-1-62703-977-2_14

    Chapter  Google Scholar 

  21. Cai D, Lee A, Chiang C-M et al (2011) Peptoid ligands that bind selectively to phosphoproteins. Bioorg Med Chem Lett 21:4960–4964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Fíla J, Honys D (2012) Enrichment techniques employed in phosphoproteomics. Amino Acids 43:1025–1047

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ficarro SB, McCleland ML, Stukenberg PT et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  CAS  PubMed  Google Scholar 

  24. Pinkse MW, Uitto PM, Hilhorst MJ et al (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  CAS  PubMed  Google Scholar 

  25. Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  PubMed  Google Scholar 

  26. Ye J, Zhang X, Young C et al (2010) Optimized IMAC–IMAC protocol for phosphopeptide recovery from complex biological samples. J Proteome Res 9:3561–3573

    Article  CAS  PubMed  Google Scholar 

  27. Najam-ul-Haq M, Jabeen F, Hussain D et al (2012) Versatile nanocomposites in phosphoproteomics: a review. Anal Chim Acta 747:7–18

    Article  CAS  PubMed  Google Scholar 

  28. Zhu Y, Stubbs LP, Ho F et al (2010) Magnetic nanocomposites: a new perspective in catalysis. ChemCatChem 2:365–374

    Article  CAS  Google Scholar 

  29. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nano Res Lett 3:397–415

    Article  CAS  Google Scholar 

  30. Lee A, Yang HJ, Lim ES et al (2008) Enrichment of phosphopeptides using bare magnetic particles. Rapid Commun Mass Spectrum 22:2561–2564

    Article  CAS  Google Scholar 

  31. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  32. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Chen C-T, Chen Y-C (2005) Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 77:5912–5919

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Xu X, Qi D et al (2008) Novel Fe3O4@TiO2 core–shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. J Proteome Res 7:2526–2538

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Wu J, Qi D et al. (2008) Novel approach for the synthesis of Fe3O4@TiO2 core–shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chem Commun 564–566

    Google Scholar 

  36. Lu Z, Duan J, He L et al (2010) Mesoporous TiO2 nanocrystal clusters for selective enrichment of phosphopeptides. Anal Chem 82:7249–7258

    Article  CAS  PubMed  Google Scholar 

  37. Lo C-Y, Chen W-Y, Chen C-T et al (2007) Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. J Proteome Res 6:887–893

    Article  CAS  PubMed  Google Scholar 

  38. Li W, Deng Q, Fang G et al (2013) Facile synthesis of Fe3O4@TiO2–ZrO2 and its application in phosphopeptide enrichment. J Mater Chem B 1:1947–1961

    Article  CAS  Google Scholar 

  39. Kweon HK, Håkansson K (2006) Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem 78:1743–1749

    Article  CAS  PubMed  Google Scholar 

  40. Ma W, Zhang C, Zhang Y et al (2014) Magnetic MSP@ZrO2 microspheres with yolk-shell structure: designed synthesis and application in highly selective enrichment of phosphopeptides. Langmuir 30:6602

    Article  CAS  PubMed  Google Scholar 

  41. Guo J, Yang W, Wang C (2013) Magnetic colloidal supraparticles: design, fabrication and biomedical applications. Adv Mater 25:5196–5214

    Article  CAS  PubMed  Google Scholar 

  42. Chen W-Y, Chen Y-C (2010) Functional Fe3O4@ZnO magnetic nanoparticle-assisted enrichment and enzymatic digestion of phosphoproteins from saliva. Anal Bioanal Chem 398:2049–2057

    Article  CAS  PubMed  Google Scholar 

  43. Chen C-T, Chen W-Y, Tsai P-J et al (2007) Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. J Proteome Res 6:316–325

    Article  CAS  PubMed  Google Scholar 

  44. Chen C-T, Chen Y-C (2010) Functional magnetic nanoparticle-based label free fluorescence detection of phosphorylated species. Chem Commun 46:5674–5676

    Article  CAS  Google Scholar 

  45. Ficarro SB, Parikh JR, Blank NC et al (2008) Niobium (V) oxide (Nb2O5): application to phosphoproteomics. Anal Chem 80:4606–4613

    Article  CAS  PubMed  Google Scholar 

  46. Lin H-Y, Chen W-Y, Chen Y-C (2009) Iron oxide/niobium oxide core–shell magnetic nanoparticle-based phosphopeptide enrichment from biological samples for MALDI MS analysis. J Biomed Nanotechnol 5:215–223

    Article  CAS  PubMed  Google Scholar 

  47. Qi D, Lu J, Deng C et al (2009) Development of core-shell structure Fe3O4@ Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. J Chromatogr A 1216:5533–5539

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Lin H, Deng C et al (2008) Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide-coated magnetic microspheres for MALDI-TOF-MS and nano-LC-ESI-MS/MS/MS analysis. Proteomics 8:238–249

    Article  CAS  PubMed  Google Scholar 

  49. Qi D, Lu J, Deng C et al (2009) Magnetically responsive Fe3O4@C@SnO2 core–shell microspheres: synthesis, characterization and application in phosphoproteomics. J Phys Chem C 113:15854–15861

    Article  CAS  Google Scholar 

  50. Wang Z-G, Cheng G, Liu Y-L et al (2013) Magnetic γ-Fe2O3@REVO4 (RE = Sm, Dy, Ho) affinity microspheres for selective capture, fast separation and easy identification of phosphopeptides. J Mater Chem B 1:1491–1500

    Article  CAS  Google Scholar 

  51. Cheng G, Zhang J-L, Liu Y-L et al (2011) Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem Commun 47:5732–5734

    Article  CAS  Google Scholar 

  52. Cheng G, Liu Y-L, Zhang J-L et al (2012) Lanthanum silicate coated magnetic microspheres as a promising affinity material for phosphopeptide enrichment and identification. Anal Bioanal Chem 404:763–770

    Article  CAS  PubMed  Google Scholar 

  53. Wang Z-G, Cheng G, Liu Y-L et al (2013) Novel 3D flowerlike hierarchical γ-Fe2O3@xNH4F · yLuF3 core–shell microspheres tailor-made by a phase transformation process for the capture of phosphopeptides. J Mater Chem B 1:4845–4854

    Article  CAS  Google Scholar 

  54. Cheng G, Liu Y-L, Wang Z-G et al (2013) Yolk–shell magnetic microspheres with mesoporous yttrium phosphate shells for selective capture and identification of phosphopeptides. J Mater Chem B 1:3661–3669

    Article  CAS  Google Scholar 

  55. Sun Y, Wang H-F (2013) Ultrathin-yttrium phosphate-shelled polyacrylate-ferriferrous oxide magnetic microspheres for rapid and selective enrichment of phosphopeptides. J Chromatogr A 1316:62–68

    Article  CAS  PubMed  Google Scholar 

  56. Block H, Maertens B, Spriestersbach A et al (2009) Immobilized-metal affinity chromatography (IMAC): a review. Method Enzymol 463:439–473

    Article  CAS  Google Scholar 

  57. Mirza MR, Rainer M, Messner CB et al (2013) A new type of metal chelate affinity chromatography using trivalent lanthanide ions for phosphopeptide enrichment. Analyst 138:2995–3004

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Qi D, Deng C et al (2008) Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. J Proteome Res 7:1767–1777

    Article  CAS  PubMed  Google Scholar 

  59. Xu X, Deng C, Gao M et al (2006) Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv Mater 18:3289–3293

    Article  CAS  Google Scholar 

  60. Tan F, Zhang Y, Mi W et al (2008) Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. J Proteome Res 7:1078–1087

    Article  CAS  PubMed  Google Scholar 

  61. Novotna L, Emmerova T, Horak D et al (2010) Iminodiacetic acid-modified magnetic poly (2-hydroxyethyl methacrylate)-based microspheres for phosphopeptide enrichment. J Chromatogr A 1217:8032–8040

    Article  CAS  PubMed  Google Scholar 

  62. Li Y-C, Lin Y-S, Tsai P-J et al (2007) Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal Chem 79:7519–7525

    Article  CAS  PubMed  Google Scholar 

  63. Ficarro SB, Adelmant G, Tomar MN et al (2009) Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal Chem 81:4566–4575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Xiong Z, Zhang L, Fang C et al (2014) Ti4+-immobilized multilayer polysaccharide coated magnetic nanoparticles for highly selective enrichment of phosphopeptides. J Mater Chem B 2:4473

    Article  CAS  Google Scholar 

  65. Zhang L, Zhao Q, Liang Z et al (2012) Synthesis of adenosine functionalized metal immobilized magnetic nanoparticles for highly selective and sensitive enrichment of phosphopeptides. Chem Commun 48:6274–6276

    Article  CAS  Google Scholar 

  66. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Dias AMGC, Hussain A, Marcos AS et al (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29:142–155

    Article  CAS  PubMed  Google Scholar 

  68. Chen C-T, Wang L-Y, Ho Y-P (2011) Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Anal Bioanal Chem 399:2795–2806

    Article  CAS  PubMed  Google Scholar 

  69. Iliuk AB, Martin VA, Alicie BM et al (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9:2162–2172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Tsunehiro M, Meki Y, Matsuoka K et al (2013) A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules. J Chromatogr B 925:86–94

    Article  CAS  Google Scholar 

  71. Fang G, Gao W, Deng Q et al (2012) Highly selective capture of phosphopeptides using a nano titanium dioxide–multiwalled carbon nanotube nanocomposite. Anal Biochem 423:210–217

    Article  CAS  PubMed  Google Scholar 

  72. Yan Y, Zheng Z, Deng C et al (2014) Selective enrichment of phosphopeptides by titania nanoparticles coated magnetic carbon nanotubes. Talanta 118:14–20

    Article  CAS  PubMed  Google Scholar 

  73. Hsiao H-H, Hsieh H-Y, Chou C-C et al (2007) Concerted experimental approach for sequential mapping of peptides and phosphopeptides using C18-functionalized magnetic nanoparticles. J Proteome Res 6:1313–1324

    Article  CAS  PubMed  Google Scholar 

  74. Lin H-Y, Chen W-Y, Chen Y-C (2009) Iron oxide/tantalum oxide core–shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Anal Bioanal Chem 394:2129–2136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from Fundação para a Ciência e a Tecnologia, Ministério da Educação e da Ciência, Portugal, through projects no. Pest-OE/EQB/LA0004/2011, PEst-C/EQB/LA0006/2013, PTDC/EBB-BIO/102163/2008, PTDC/EBBBIO/118317/2010 and SFRH/BD/64427/2009 for I.L.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Íris L. Batalha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Batalha, Í.L., Roque, A.C.A. (2016). Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3049-4_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3048-7

  • Online ISBN: 978-1-4939-3049-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics