Skip to main content

Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1355))

Abstract

Protein phosphorylation, a process in which kinases modify serines, threonines, and tyrosines with phosphoryl groups is of major importance in eukaryotic biology. Protein phosphorylation events are key initiators of signaling responses which determine cellular outcomes after environmental and metabolic stimuli, and are thus highly regulated. Therefore, studying the mechanism of regulation by phosphorylation, and pinpointing the exact site of phosphorylation on proteins is of high importance. This protocol describes in detail a phosphoproteomics workflow for ultra-deep coverage by fractionating peptide mixtures based on high pH (basic) reversed-phase chromatography prior to phosphopeptide enrichment and mass spectrometric analysis. Peptides are separated on a C18 reversed-phase column under basic conditions and fractions collected in timed intervals followed by concatenation of the fractions. Each Fraction is subsequently enriched for phosphopeptides using TiO2 followed by LC/MS analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648

    Article  CAS  PubMed  Google Scholar 

  3. Kruse J-P, Gu W (2009) Modes of p53 regulation. Cell 137:609–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Citri A, Yarden Y (2006) EGF–ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7:505–516

    Article  CAS  PubMed  Google Scholar 

  5. Batth TS, Francavilla C, Olsen JV (2014) Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J Proteome Res 13:6176

    Article  CAS  PubMed  Google Scholar 

  6. Gilar M, Olivova P, Daly AE, Gebler JC (2005) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 28:1694–1703

    Article  CAS  PubMed  Google Scholar 

  7. Yang F, Shen Y, Camp DG, Smith RD (2012) High pH reversed-phase chromatography with fraction concatenation as an alternative to strong-cation exchange chromatography for two-dimensional proteomic analysis. Expert Rev Proteomics 9:129–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76(14):3935–3943

    Article  CAS  PubMed  Google Scholar 

  9. Kelstrup CD, Young C, Lavallee R, Nielsen ML, Olsen JV (2012) Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J Proteome Res 11:3487

    Article  CAS  PubMed  Google Scholar 

  10. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  11. Percy AJ, Simon R, Chambers AG, Borchers CH (2014) Enhanced sensitivity and multiplexing with 2D LC/MRM-MS and labeled standards for deeper and more comprehensive protein quantitation. J Proteomics 106:113–124

    Article  CAS  PubMed  Google Scholar 

  12. Ficarro SB, Zhang Y, Carrasco-Alfonso MJ, Garg B, Adelmant G, Webber JT, Luckey CJ, Marto JA (2011) Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis. Mol Cell Proteomics 10:O111.011064

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Proteomics Program at the Novo Nordisk Foundation Center for Protein Research (CPR) for critical input on the protocol. Work at CPR is funded in part by a generous donation from the Novo Nordisk Foundation (Grant number NNF14CC0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper V. Olsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Batth, T.S., Olsen, J.V. (2016). Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3049-4_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3048-7

  • Online ISBN: 978-1-4939-3049-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics