Skip to main content

Thiol-ene-Enabled Detection of Thiophosphorylation as a Labeling Strategy for Phosphoproteins

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1355))

Abstract

The adenosine triphosphate (ATP) analogue adenosine 5′-O-(3-thiotriphosphate) (ATPγS) has been applied as a tool to study kinase-substrate phosphorylation. Not only does the transfer of a thiophosphate group represent a unique modification amid the phosphoproteome, but it can also be stable to phosphatase activity. However, detection of this species is complicated due to the similar chemical reactivity of thiophosphate and proteinaceous thiols. Here, we describe a novel method for detection of protein thiophosphorylation utilizing the thiol-ene reaction. By first chemoselectively capping protein thiols through radical chemistry, kinase-catalyzed thiophosphorylation can be visualized specifically.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Allen JJ, Lazerwith SE, Shokat KM (2005) Bio-orthogonal affinity purification of direct kinase substrates. J Am Chem Soc 127:5288–5289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Allen JJ, Li M, Brinkworth CS et al (2007) A semisynthetic epitope for kinase substrates. Nat Methods 4:511–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kinoshita E, Kinoshita-Kikuta E, Shiba A et al (2014) Profiling of protein thiophosphorylation by Phos-tag affinity electrophoresis: evaluation of adenosine 5'-O-(3-thiotriphosphate) as a phosphoryl donor in protein kinase reactions. Proteomics 14:668–679

    Article  CAS  PubMed  Google Scholar 

  4. Kwon SW, Kim SC, Jaunbergs J et al (2003) Selective enrichment of thiophosphorylated polypeptides as a tool for the analysis of protein phosphorylation. Mol Cell Proteomics 2:242–247

    CAS  PubMed  Google Scholar 

  5. Carlson SM, White FM (2012) Labeling and identification of direct kinase substrates. Sci Signal 5:pl3

    PubMed Central  PubMed  Google Scholar 

  6. Lourido S, Jeschke GR, Turk BE et al (2013) Exploiting the unique ATP-binding pocket of Toxoplasma Calcium-Dependent Protein Kinase 1 to identify its substrates. ACS Chem Biol 8:1155–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Uhalte EC, Kirchner M, Hellwig N et al (2012) In vivo conditions to identify Prkci phosphorylation targets using the analog-sensitive kinase method in zebrafish. PLoS One 7:e40000

    Article  Google Scholar 

  8. Cassel D, Glaser L (1982) Resistance to phosphatase of thiophosphorylated epidermal growth factor receptor in A431 membranes. Proc Natl Acad Sci U S A 79:2231–2235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hiriyanna KT, Baedke D, Baek KH et al (1994) Thiophosphorylated substrate analogs are potent active site-directed inhibitors of protein-tyrosine phosphatases. Anal Biochem 223:51–58

    Article  CAS  PubMed  Google Scholar 

  10. Lee SE, Elphick LM, Kramer HB et al (2011) The chemoselective one-step alkylation and isolation of thiophosphorylated Cdk2 substrates in the presence of native cysteine. ChemBioChem 12:633–640

    Article  CAS  PubMed  Google Scholar 

  11. Blethrow JD, Glavy JS, Morgan DO et al (2008) Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc Natl Acad Sci U S A 105:1442–1447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chi Y, Clurman BE (2010) Mass spectrometry-based identification of protein kinase substrates utilizing engineered kinases and thiophosphate labeling. Curr Protoc Chem Biol 2:219–234

    PubMed  Google Scholar 

  13. Garber KC, Carlson EE (2013) Thiol-ene enabled detection of thiophosphorylated kinase substrates. ACS Chem Biol 8:1671–1676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Fairbanks BD, Schwartz MP, Bowman CN et al (2009) Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30:6702–6707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Rasband WS (1997–2014) ImageJ. U.S. National Institutes of Health, Bethesda, MD

    Google Scholar 

  16. Lo Conte M, Staderini S, Marra A et al (2011) Multi-molecule reaction of serum albumin can occur through thiol-yne coupling. Chem Commun 47:11086–11088

    Article  CAS  Google Scholar 

  17. Fairbanks BD, Singh SP, Bowman CN et al (2011) Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44:2444–2450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dondoni A, Marra A (2012) Recent applications of thiol-ene coupling as a click process for glycoconjugation. Chem Soc Rev 41:573–586

    Article  CAS  PubMed  Google Scholar 

  19. Li YM, Yang MY, Huang YC et al (2012) Genetically encoded alkenyl-pyrrolysine analogues for thiol-ene reaction mediated site-specific protein labeling. Chem Sci 3:2766–2770

    Article  CAS  Google Scholar 

  20. Valkevich EM, Guenette RG, Sanchez NA et al (2012) Forging isopeptide bonds using thiol-ene chemistry: site-specific coupling of ubiquitin molecules for studying the activity of isopeptidases. J Am Chem Soc 134:6916–6919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kocaoglu O, Carlson EE (2013) Penicillin-binding protein imaging probes. Curr Protoc Chem Biol 5:239–250

    Article  PubMed Central  PubMed  Google Scholar 

  22. Griesbaum K (1970) Problems and possibilities of the free-radical addition of thiols to unsaturated compounds. Angew Chem Int Ed Engl 9:273–287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kathleen C. A. Garber for helpful discussions. This work was supported by NIH DP2OD008592, a Pew Biomedical Scholar Award (E.E.C.), the Research Corporation for Science Advancement (Cottrell Scholar Award) (E.E.C.), a Sloan Research Fellowship (E.E.C), and an Indiana University Quantitative and Chemical Biology Training Fellowship (K.E.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin E. Carlson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wilke, K.E., Carlson, E.E. (2016). Thiol-ene-Enabled Detection of Thiophosphorylation as a Labeling Strategy for Phosphoproteins. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3049-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3048-7

  • Online ISBN: 978-1-4939-3049-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics