Skip to main content

Novel Biochemical Tools for Probing HIV RNA Structure

  • Protocol
HIV Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1354))

Abstract

Functional analysis of viral RNA requires knowledge of secondary structure arrangements and tertiary base interactions. Thus, high-throughput and comprehensive methods for assessing RNA structure are highly desirable. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) has proven highly useful for modeling the secondary structures of HIV and other retroviral RNAs in recent years. This technology is not without its limitations however, as SHAPE data can be severely compromised when the RNA under study is structurally heterogeneous. In addition, the method reveals little information regarding the three-dimensional (3D) organization of an RNA. This chapter outlines four detailed SHAPE-related methodologies that circumvent these limitations. “Ensemble” and “in-gel” variations of SHAPE permit structural analysis of individual conformers within structurally heterogeneous mixtures of RNA, while probing strategies that utilize “through-space” cleavage reagents such as methidiumpropyl-EDTA (MPE) and peptides appended with an ATCUN (amino terminal copper/nickel binding motif) can provide insight into 3D organization. Combinational application of these techniques provides a formidable arsenal for exploring the structures of HIV RNAs and associated nucleoprotein complexes.

Jason W. Rausch and Joanna Sztuba-Solinska have equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATCUN :

Amino terminal copper- and nickel-binding motif

MPE :

Methidiumpropyl-EDTA

ND:

Non-denaturing

PAGE:

Polyacrylamide gel electrophoresis

RRE :

Rev response element

SHAPE:

Selective 2′-hydroxyl acylation analyzed by primer extension

TAR :

Trans-activation response element

References

  1. Deforges J, Chamond N, Sargueil B (2012) Structural investigation of HIV-1 genomic RNA dimerization process reveals a role for the Major Splice-site Donor stem loop. Biochimie 94:1481–1489

    Article  CAS  PubMed  Google Scholar 

  2. Legiewicz M et al (2008) Resistance to RevM10 inhibition reflects a conformational switch in the HIV-1 Rev response element. Proc Natl Acad Sci U S A 105:14365–14370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilkinson KA et al (2008) High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 6:e96

    Article  PubMed  PubMed Central  Google Scholar 

  4. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231

    Article  CAS  PubMed  Google Scholar 

  5. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform 11:129

    Article  Google Scholar 

  6. Lusvarghi S et al (2013) The HIV-2 Rev-response element: determining secondary structure and defining folding intermediates. Nucleic Acids Res 41:6637–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kenyon JC, Prestwood LJ, Le Grice SF, Lever AM (2013) In-gel probing of individual RNA conformers within a mixed population reveals a dimerization structural switch in the HIV-1 leader. Nucleic Acids Res 41:e174. doi:10.1093/nar/gkt690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han H, Schepartz A, Pellegrini M, Dervan PB (1994) Mapping RNA regions in eukaryotic ribosomes that are accessible to methidiumpropyl-EDTA.Fe(II) and EDTA.Fe(II). Biochemistry 33:9831–9844

    Article  CAS  PubMed  Google Scholar 

  9. Popenda M et al (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40:e112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McGookin R (1988) Electrophoresis of DNA in nondenaturing polyacrylamide gels. Methods Mol Biol 4:75–79

    CAS  PubMed  Google Scholar 

  11. Rio DC, Ares M Jr, Hannon GJ, Nilsen TW (2010) Nondenaturing agarose gel electrophoresis of RNA. Cold Spring Harb Protoc 2010:pdb.prot5445

    Article  PubMed  Google Scholar 

  12. Mortimer SA, Weeks KM (2007) A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 129:4144–4145

    Article  CAS  PubMed  Google Scholar 

  13. Mitra S, Shcherbakova IV, Altman RB, Brenowitz M, Laederach A (2008) High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res 36:e63

    Article  PubMed  PubMed Central  Google Scholar 

  14. Das R, Laederach A, Pearlman SM, Herschlag D, Altman RB (2005) SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11:344–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci U S A 106:97–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McGinnis JL, Dunkle JA, Cate JH, Weeks KM (2012) The mechanisms of RNA SHAPE chemistry. J Am Chem Soc 134:6617–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Byun Y, Han K (2006) PseudoViewer: web application and web service for visualizing RNA pseudoknots and secondary structures. Nucleic Acids Res 34:W416–W422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darty K, Denise A, Ponty Y (2009) VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Legiewicz M et al (2010) The RNA transport element of the murine musD retrotransposon requires long-range intramolecular interactions for function. J Biol Chem 285:42097–42104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sztuba-Solinska J et al (2013) Structural complexity of Dengue virus untranslated regions: cis-acting RNA motifs and pseudoknot interactions modulating functionality of the viral genome. Nucleic Acids Res 41:5075–5089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stephenson JD et al (2013) Three-dimensional RNA structure of the major HIV-1 packaging signal region. Structure 21:951–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sztuba-Solinska J, Le Grice SF (2014) Insights into secondary and tertiary interactions of dengue virus RNA by SHAPE. Methods Mol Biol 1138:225–239

    Article  CAS  PubMed  Google Scholar 

  23. Gherghe CM, Leonard CW, Ding F, Dokholyan NV, Weeks KM (2009) Native-like RNA tertiary structures using a sequence-encoded cleavage agent and refinement by discrete molecular dynamics. J Am Chem Soc 131:2541–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Celander DW (2001) Probing RNA structures with hydroxyl radicals. Curr Protoc Nucleic Acid Chem Chapter 6: Unit 6.5

    Google Scholar 

  25. Jin Y, Cowan JA (2007) Cellular activity of Rev response element RNA targeting metallopeptides. J Biol Inorg Chem 12:637–644

    Article  CAS  PubMed  Google Scholar 

  26. Hertzberg RP, Dervan PB (1984) Cleavage of DNA with methidiumpropyl-EDTA-iron(II): reaction conditions and product analyses. Biochemistry 23(17):3934-45.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Intramural Research Program of the National Cancer Institute, National Institutes of Health, Department of Health and Human Services. The authors would like to thank Jennifer Miller for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart F. J. Le Grice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rausch, J.W., Sztuba-Solinska, J., Lusvarghi, S., Le Grice, S.F.J. (2016). Novel Biochemical Tools for Probing HIV RNA Structure. In: Prasad, V., Kalpana, G. (eds) HIV Protocols. Methods in Molecular Biology, vol 1354. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3046-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3046-3_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3045-6

  • Online ISBN: 978-1-4939-3046-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics