Skip to main content

The Proteomic Characterization of Plasma or Serum from HIV-Infected Patients

  • Protocol
HIV Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1354))

Abstract

Proteomics holds great promise for uncovering disease-related markers and mechanisms in human disorders. Recent advances have led to efficient, sensitive, and reproducible methods to quantitate the proteome in biological samples. Here we describe the techniques for processing, running, and analyzing samples from HIV-infected plasma or serum through quantitative mass spectroscopy.

Nicole A. Haverland and Lance M. Villeneuve have equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pernemalm M, Lehtio J (2014) Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics 11(4):431–448

    Article  CAS  PubMed  Google Scholar 

  2. Anderson L (2014) Six decades searching for meaning in the proteome. J Proteomics 107C:24–30

    Article  Google Scholar 

  3. Burkhard PR, Rodrigo N, May D, Sztajzel R, Sanchez JC, Hochstrasser DF, Schiffer E, Reverdin A, Lacroix JS (2001) Assessing cerebrospinal fluid rhinorrhea: a two-dimensional electrophoresis approach. Electrophoresis 22(9):1826–1833

    Article  CAS  PubMed  Google Scholar 

  4. Vejda S, Posovszky C, Zelzer S, Peter B, Bayer E, Gelbmann D, Schulte-Hermann R, Gerner C (2002) Plasma from cancer patients featuring a characteristic protein composition mediates protection against apoptosis. Mol Cell Proteomics 1(5):387–393

    Article  CAS  PubMed  Google Scholar 

  5. DeSouza LV, Siu KW (2013) Mass spectrometry-based quantification. Clin Biochem 46(6):421–431

    Article  CAS  PubMed  Google Scholar 

  6. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362

    Article  CAS  PubMed  Google Scholar 

  8. Scopes RK (1974) Measurement of protein by spectrophotometry at 205 nm. Anal Biochem 59(1):277–282

    Article  CAS  PubMed  Google Scholar 

  9. Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics 17(6):509–519

    Article  CAS  PubMed  Google Scholar 

  10. Kayala MA, Baldi P (2012) Cyber-T web server: differential analysis of high-throughput data. Nucleic Acids Res 40(Web Server issue):W553–W559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheadle C, Vawter MP, Freed WJ, Becker KG (2003) Analysis of microarray data using Z score transformation. J Mol Diagn 5(2):73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haverland NA, Fox HS, Ciborowski P (2014) Quantitative proteomics by SWATH-MS reveals altered expression of nucleic acid binding and regulatory proteins in HIV-1-infected macrophages. J Proteome Res 13(4):2109–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taylor LE, Swan T, Mayer KH (2012) HIV coinfection with hepatitis C virus: evolving epidemiology and treatment paradigms. Clin Infect Dis 55(Suppl 1):S33–S42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deeks SG, Lewin SR, Havlir DV (2013) The end of AIDS: HIV infection as a chronic disease. Lancet 382(9903):1525–1533

    Article  PubMed  PubMed Central  Google Scholar 

  15. Krebs FC, Miller SR, Malamud D, Howett MK, Wigdahl B (1999) Inactivation of human immunodeficiency virus type 1 by nonoxynol-9, C31G, or an alkyl sulfate, sodium dodecyl sulfate. Antiviral Res 43(3):157–173

    Article  CAS  PubMed  Google Scholar 

  16. Villeneuve LM, Stauch KL, Fox HS (2014) Proteomic analysis of the mitochondria from embryonic and postnatal rat brains reveals response to developmental changes in energy demands. J Proteomics 109C:228–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard S. Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Haverland, N.A., Villeneuve, L.M., Ciborowski, P., Fox, H.S. (2016). The Proteomic Characterization of Plasma or Serum from HIV-Infected Patients. In: Prasad, V., Kalpana, G. (eds) HIV Protocols. Methods in Molecular Biology, vol 1354. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3046-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3046-3_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3045-6

  • Online ISBN: 978-1-4939-3046-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics