Skip to main content

Measuring T Cell-to-T Cell HIV-1 Transfer, Viral Fusion, and Infection Using Flow Cytometry

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1354))

Abstract

Direct T cell-to-T cell HIV-1 infection is a distinct mode of HIV-1 infection that requires physical contact between an HIV-1-infected “donor” cell and an uninfected, CD4-expressing “target” cell. In vitro studies indicate that HIV-1 cell-to-cell infection is much more efficient than infection by cell-free viral particles; however, the exact mechanisms of the enhanced efficiency of this infection pathway are still unclear. Several assays have been developed to study the mechanism of direct cell-to-cell HIV-1 transmission and to assess sensitivity to neutralizing antibodies and pharmacologic inhibitors. These assays are based on the coculture of donor and target cells. Here, we describe methods that utilize flow cytometry, which can discriminate donor and target cells and can assess different stages of entry and infection following cell-to-cell contact. HIV Gag-iGFP, a clone that makes fluorescent virus particles, can be used to measure cell-to-cell transfer of virus particles. HIV NL-GI, a clone that expresses GFP as an early gene, facilitates the measure of productive infection after cell-to-cell contact. Lastly, a variation of the β-lactamase (BlaM)-Vpr fusion assay can be used to measure the viral membrane fusion process after coculture of donor and target cells in a manner that is independent of cell-cell fusion. These assays can be performed in the presence of neutralizing antibodies/inhibitors to determine the 50 % inhibitory concentration (IC50) required to block infection specifically in the target cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300:1295–1297. doi:10.1126/science.1084238

    Article  CAS  PubMed  Google Scholar 

  2. Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257:383–387

    Article  CAS  PubMed  Google Scholar 

  3. Arrighi JF, Pion M, Garcia E, Escola JM, van Kooyk Y, Geijtenbeek TB, Piguet V (2004) DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J Exp Med 200:1279–1288. doi:10.1084/jem.20041356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ (2004) HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 199:283–293. doi:10.1084/jem.20030648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Piguet V, Sattentau Q (2004) Dangerous liaisons at the virological synapse. J Clin Invest 114:605–610. doi:10.1172/jci22812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dale BM, Alvarez RA, Chen BK (2013) Mechanisms of enhanced HIV spread through T-cell virological synapses. Immunol Rev 251:113–124. doi:10.1111/imr.12022

    Article  PubMed  Google Scholar 

  7. Puigdomenech I, Massanella M, Cabrera C, Clotet B, Blanco J (2009) On the steps of cell-to-cell HIV transmission between CD4 T cells. Retrovirology 6:89. doi:10.1186/1742-4690-6-89

    Article  PubMed  PubMed Central  Google Scholar 

  8. Igakura T, Stinchcombe JC, Goon PK, Taylor GP, Weber JN, Griffiths GM, Tanaka Y, Osame M, Bangham CR (2003) Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299:1713–1716. doi:10.1126/science.1080115

    Article  CAS  PubMed  Google Scholar 

  9. Chen P, Hubner W, Spinelli MA, Chen BK (2007) Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol 81:12582–12595. doi:10.1128/jvi.00381-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sourisseau M, Sol-Foulon N, Porrot F, Blanchet F, Schwartz O (2007) Inefficient human immunodeficiency virus replication in mobile lymphocytes. J Virol 81:1000–1012. doi:10.1128/jvi.01629-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arthos J, Cicala C, Martinelli E, Macleod K, Van Ryk D, Wei D, Xiao Z, Veenstra TD, Conrad TP, Lempicki RA, McLaughlin S, Pascuccio M, Gopaul R, McNally J, Cruz CC, Censoplano N, Chung E, Reitano KN, Kottilil S, Goode DJ, Fauci AS (2008) HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol 9:301–309. doi:10.1038/ni1566

    Article  CAS  PubMed  Google Scholar 

  12. Rudnicka D, Feldmann J, Porrot F, Wietgrefe S, Guadagnini S, Prevost MC, Estaquier J, Haase AT, Sol-Foulon N, Schwartz O (2009) Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J Virol 83:6234–6246. doi:10.1128/jvi.00282-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jolly C, Mitar I, Sattentau QJ (2007) Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells. J Virol 81:13916–13921. doi:10.1128/jvi.01585-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haller C, Fackler OT (2008) HIV-1 at the immunological and T-lymphocytic virological synapse. Biol Chem 389:1253–1260. doi:10.1515/bc.2008.143

    Article  CAS  PubMed  Google Scholar 

  15. Vasiliver-Shamis G, Dustin ML, Hioe CE (2010) HIV-1 virological synapse is not simply a copycat of the immunological synapse. Viruses 2(5):1239–1260. doi:10.3390/v2051239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sattentau Q (2010) Cell-to-cell spread of retroviruses. Viruses 2:1306–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martin N, Welsch S, Jolly C, Briggs JA, Vaux D, Sattentau QJ (2010) Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J Virol 84:3516–3527. doi:10.1128/jvi.02651-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gupta P, Balachandran R, Ho M, Enrico A, Rinaldo C (1989) Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody. J Virol 63:2361–2365

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dale BM, McNerney GP, Thompson DL, Hubner W, de Los RK, Chuang FY, Huser T, Chen BK (2011) Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe 10:551–562. doi:10.1016/j.chom.2011.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hubner W, McNerney GP, Chen P, Dale BM, Gordon RE, Chuang FY, Li XD, Asmuth DM, Huser T, Chen BK (2009) Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323:1743–1747. doi:10.1126/science.1167525

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sloan RD, Kuhl BD, Mesplede T, Munch J, Donahue DA, Wainberg MA (2013) Productive entry of HIV-1 during cell-to-cell transmission via dynamin-dependent endocytosis. J Virol 87:8110–8123. doi:10.1128/jvi.00815-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sigal A, Kim JT, Balazs AB, Dekel E, Mayo A, Milo R, Baltimore D (2011) Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477:95–98. doi:10.1038/nature10347

    Article  CAS  PubMed  Google Scholar 

  23. Abela IA, Berlinger L, Schanz M, Reynell L, Gunthard HF, Rusert P, Trkola A (2012) Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog 8:e1002634. doi:10.1371/journal.ppat.1002634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Durham ND, Yewdall AW, Chen P, Lee R, Zony C, Robinson JE, Chen BK (2012) Neutralization resistance of virological synapse-mediated HIV-1 Infection is regulated by the gp41 cytoplasmic tail. J Virol 86:7484–7495. doi:10.1128/jvi.00230-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Swartz TH, Esposito AM, Durham ND, Hartmann B, Chen BK (2014) P2X-selective purinergic antagonists are strong inhibitors of HIV-1 fusion during both cell-to-cell and cell-free infection. J Virol 88:11504. doi:10.1128/jvi.01158-14

    Article  PubMed  PubMed Central  Google Scholar 

  26. Massanella M, Puigdomenech I, Cabrera C, Fernandez-Figueras MT, Aucher A, Gaibelet G, Hudrisier D, Garcia E, Bofill M, Clotet B, Blanco J (2009) Antigp41 antibodies fail to block early events of virological synapses but inhibit HIV spread between T cells. AIDS 23:183–188. doi:10.1097/QAD.0b013e32831ef1a3

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez-Palomino S, Massanella M, Carrillo J, Garcia A, Garcia F, Gonzalez N, Merino A, Alcami J, Bofill M, Yuste E, Gatell JM, Clotet B, Blanco J (2011) A cell-to-cell HIV transfer assay identifies humoral responses with broad neutralization activity. Vaccine 29:5250–5259. doi:10.1016/j.vaccine.2011.05.016

    Article  CAS  PubMed  Google Scholar 

  28. Malbec M, Porrot F, Rua R, Horwitz J, Klein F, Halper-Stromberg A, Scheid JF, Eden C, Mouquet H, Nussenzweig MC, Schwartz O (2013) Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission. J Exp Med 210:2813–2821. doi:10.1084/jem.20131244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Agosto LM, Zhong P, Munro J, Mothes W (2014) Highly active antiretroviral therapies are effective against HIV-1 cell-to-cell transmission. PLoS Pathog 10:e1003982. doi:10.1371/journal.ppat.1003982

    Article  PubMed  PubMed Central  Google Scholar 

  30. Titanji BK, Aasa-Chapman M, Pillay D, Jolly C (2013) Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells. Retrovirology 10:161. doi:10.1186/1742-4690-10-161

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hubner W, Chen P, Del Portillo A, Liu Y, Gordon RE, Chen BK (2007) Sequence of human immunodeficiency virus type 1 (HIV-1) Gag localization and oligomerization monitored with live confocal imaging of a replication-competent, fluorescently tagged HIV-1. J Virol 81:12596–12607. doi:10.1128/jvi.01088-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK, Strominger JL, Baltimore D (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10:661–671

    Article  CAS  PubMed  Google Scholar 

  33. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–291

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cavrois M, De Noronha C, Greene WC (2002) A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat Biotechnol 20:1151–1154. doi:10.1038/nbt745

    Article  CAS  PubMed  Google Scholar 

  35. Tobiume M, Lineberger JE, Lundquist CA, Miller MD, Aiken C (2003) Nef does not affect the efficiency of human immunodeficiency virus type 1 fusion with target cells. J Virol 77:10645–10650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cavrois M, Neidleman J, Bigos M, Greene WC (2004) Fluorescence resonance energy transfer-based HIV-1 virion fusion assay. Methods Mol Biol 263:333–344. doi:10.1385/1-59259-773-4:333

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the B. K. Chen Lab for helpful comments and the Flow Cytometry Shared Resource Facility, Icahn School of Medicine at Mount Sinai, for assistance. This work was supported by NIH/NIDA DA028866 and NIH/NIAID A1074420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin K. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Durham, N.D., Chen, B.K. (2016). Measuring T Cell-to-T Cell HIV-1 Transfer, Viral Fusion, and Infection Using Flow Cytometry. In: Prasad, V., Kalpana, G. (eds) HIV Protocols. Methods in Molecular Biology, vol 1354. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3046-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3046-3_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3045-6

  • Online ISBN: 978-1-4939-3046-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics