Skip to main content

Improved Methods to Detect Low Levels of HIV Using Antibody-Based Technologies

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1354))

Abstract

Persistence of latent virus represents a major barrier to eradicating HIV even in the current antiretroviral therapy era. A critical limitation to eliminating these viral reservoirs is the lack of reliable methods to detect, quantify, and characterize cells harboring low levels of virus. However, recent work of several laboratories indicates that PCR and viral amplification based technologies underestimate or overestimate the size of the reservoirs. Thus, new technologies and methodologies to detect, quantify, and characterize these viral reservoirs are necessary to monitor and eradicate HIV. Recent developments in imaging technologies have enabled the development or improvement of detection protocols and have facilitated the identification and quantification of several markers with exquisite resolution. In the context of HIV, we developed new protocols for the detection of low amounts of viral proteins. In this chapter, we describe several antibody-based technologies for signal amplification to improve and detect low amounts of HIV proteins in cells, tissues, and other biological samples. The improvement in these techniques is essential to detect viral reservoirs and to design strategies to eliminate them.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ (2009) The challenge of finding a cure for HIV infection. Science 323:1304–1307

    Article  CAS  PubMed  Google Scholar 

  2. Chomont N et al (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15:893–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ (1996) Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10:573–585

    Article  CAS  PubMed  Google Scholar 

  4. Mahlknecht U, Deng C, Lu MC, Greenough TC, Sullivan JL, O’Brien WA, Herbein G (2000) Resistance to apoptosis in HIV-infected CD4+ T lymphocytes is mediated by macrophages: role for Nef and immune activation in viral persistence. J Immunol 165:6437–6446

    Article  CAS  PubMed  Google Scholar 

  5. Coleman CM, Wu L (2009) HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 6:51

    Article  PubMed  PubMed Central  Google Scholar 

  6. Durand CM, Blankson JN, Siliciano RF (2012) Developing strategies for HIV-1 eradication. Trends Immunol 33:554–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eriksson S et al (2013) Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog 9:e1003174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spina CA et al (2013) An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 9:e1003834

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rella CE, Ruel N, Eugenin EA (2014) Development of imaging techniques to study the pathogenesis of biosafety level 2/3 infectious agents. Pathog Dis 72:167–173

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Subbian S, Eugenin E, Kaplan G (2014) Detection of Mycobacterium tuberculosis in Latently Infected Lungs by Immunohistochemistry and Confocal Microscopy. J Med Microbiol 63:1432–1435

    Article  PubMed  PubMed Central  Google Scholar 

  11. Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS (1989) Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci U S A 86:2365–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harrer T, Jassoy C, Harrer E, Johnson RP, Walker BD (1993) Induction of HIV-1 replication in a chronically infected T-cell line by cytotoxic T lymphocytes. J Acquir Immune Defic Syndr 6:865–871

    CAS  PubMed  Google Scholar 

  13. Butera ST, Roberts BD, Leung K, Nabel GJ, Folks TM (1993) Tumor necrosis factor receptor expression and signal transduction in HIV-1-infected cells. AIDS 7:911–918

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto M, Makino M, Kitajima I, Maruyama I, Baba M (1997) HIV-1-infected myelomonocytic cells are resistant to Fas-mediated apoptosis: effect of tumor necrosis factor-alpha on their Fas expression and apoptosis. Med Microbiol Immunol 186:11–17

    Article  CAS  PubMed  Google Scholar 

  15. Deyl Z, Horakova M, Vancikova O (1981) Changes in pyridinoline content of elastin during ontogeny. Mech Ageing Dev 17:321–325

    Article  CAS  PubMed  Google Scholar 

  16. Deyl Z, Macek K, Adam M, Vancikova O (1980) Studies on the chemical nature of elastin fluorescence. Biochim Biophys Acta 625:248–254

    Article  CAS  PubMed  Google Scholar 

  17. Orellana JA, Saez JC, Bennett MV, Berman JW, Morgello S, Eugenin EA (2014) HIV increases the release of dickkopf-1 protein from human astrocytes by a Cx43 hemichannel-dependent mechanism. J Neurochem 128:752–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hazleton JE, Berman JW, Eugenin EA (2012) Purinergic receptors are required for HIV-1 infection of primary human macrophages. J Immunol 188:4488–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murooka TT, Mempel TR (2013) Intravital microscopy in BLT-humanized mice to study cellular dynamics in HIV infection. J Infect Dis 208(Suppl 2):S137–S144

    Article  PubMed  PubMed Central  Google Scholar 

  20. Paddock SW, Eliceiri KW (2014) Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques. Methods Mol Biol 1075:9–47

    Article  PubMed  Google Scholar 

  21. Shaner NC (2014) Fluorescent proteins for quantitative microscopy: important properties and practical evaluation. Methods Cell Biol 123:95–111

    Article  PubMed  Google Scholar 

  22. Buchwalow I, Samoilova V, Boecker W, Tiemann M (2011) Non-specific binding of antibodies in immunohistochemistry: fallacies and facts. Sci Rep 1:28

    Article  PubMed  PubMed Central  Google Scholar 

  23. Amat F, Lemon W, Mossing DP, McDole K, Wan Y, Branson K, Myers EW, Keller PJ (2014) Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat Methods 11:951–958

    Article  CAS  PubMed  Google Scholar 

  24. Ellefsen KL, Settle B, Parker I, Smith IF (2014) An algorithm for automated detection, localization and measurement of local calcium signals from camera-based imaging. Cell Calcium 56:147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maska M et al (2014) A benchmark for comparison of cell tracking algorithms. Bioinformatics 30:1609–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song W, Liu W, Niu X, Wang Q, Sun L, Liu M, Fan Y (2013) Three-dimensional morphometric comparison of normal and apoptotic endothelial cells based on laser scanning confocal microscopy observation. Microsc Res Tech 76:1154–1162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Mental Health grants MH075679, MH090958, and MH102113 (to J.W.B.), and MH096625 (to E.A.E.). NIH Centers for AIDS Research (CFAR) Grant AI-051519. We would like to thank the Analytical Imaging Facility at PHRI and Nikon Instruments for microscopy support (http://www.phri.org/facilities/facil_imaging.asp).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eliseo A. Eugenin Ph.D. or Joan W. Berman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Eugenin, E.A., Berman, J.W. (2016). Improved Methods to Detect Low Levels of HIV Using Antibody-Based Technologies. In: Prasad, V., Kalpana, G. (eds) HIV Protocols. Methods in Molecular Biology, vol 1354. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3046-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3046-3_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3045-6

  • Online ISBN: 978-1-4939-3046-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics