Skip to main content

LGIT In Vitro Latency Model in Primary and T Cell Lines to Test HIV-1 Reactivation Compounds

  • Protocol
HIV Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1354))

  • 3296 Accesses

Abstract

Persistent latent HIV-1 reservoirs pose a major barrier for combinatorial antiretroviral therapy (cART) to achieve eradication of the virus. A variety of mechanisms likely contribute to HIV-1 persistence, including establishment of post-integration latency in resting CD4+ T-lymphocytes, the proliferation of these latently infected cells, and the induced or spontaneous reactivation of latent virus. To elucidate the mechanisms of latency and to investigate therapeutic strategies for reactivating and purging the latent reservoir, investigators have developed in vitro models of HIV-1 latency using primary CD4+ T-lymphocytes and CD4+ T-cell lines. Several types of in vitro latency models range from replication-competent to single-round, replication-deficient viruses exhibiting different degrees of viral genomic deletion. Working under the hypothesis that HIV-1 post-integration latency is directly linked to HIV-1 promoter activity, which can be obscured by additional proteins expressed during replication, we focus here on the creation of latently infected primary human T-cells and cell lines through the single-round, replication deficient HIV-1 LGIT model. In this model the long terminal repeat (LTR) of the HIV-1 virus drives a cassette of GFP-IRES-Tat that allows testing of reactivating components and initiates a positive feedback loop through Tat expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS (1998) Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci U S A 95:8869–8873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Malim MH, Cullen BR (1991) HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell 65:241–248

    Article  CAS  PubMed  Google Scholar 

  3. Lassen KG, Ramyar KX, Bailey JR, Zhou Y, Siliciano RF (2006) Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog 2:e68. doi:10.1371/journal.ppat.0020068

    Article  PubMed  PubMed Central  Google Scholar 

  4. Siliciano JD, Siliciano RF (2000) Latency and viral persistence in HIV-1 infection. J Clin Invest 106:823–825. doi:10.1172/JCI11246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bosque A, Planelles V (2009) Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 113:58–65. doi:10.1182/blood-2008-07-168393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sahu GK, Lee K, Ji J, Braciale V, Baron S, Cloyd MW (2006) A novel in vitro system to generate and study latently HIV-infected long-lived normal CD4+ T-lymphocytes. Virology 355:127–137. doi:10.1016/j.virol.2006.07.020

    Article  CAS  PubMed  Google Scholar 

  7. Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22:1868–1877. doi:10.1093/emboj/cdg188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burke B, Brown HJ, Marsden MD, Bristol G, Vatakis DN, Zack JA (2007) Primary cell model for activation-inducible human immunodeficiency virus. J Virol 81:7424–7434. doi:10.1128/JVI.02838-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marini A, Harper JM, Romerio F (2008) An in vitro system to model the establishment and reactivation of HIV-1 latency. J Immunol 181:7713–7720

    Article  CAS  PubMed  Google Scholar 

  10. Swiggard WJ, Baytop C, Yu JJ, Dai J, Li C, Schretzenmair R, Theodosopoulos T, O’Doherty U (2005) Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli. J Virol 79:14179–14188. doi:10.1128/JVI.79.22.14179-14188.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tyagi M, Pearson RJ, Karn J (2010) Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol 84:6425–6437. doi:10.1128/JVI.01519-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang HC, Xing S, Shan L, O’Connell K, Dinoso J, Shen A, Zhou Y, Shrum CK, Han Y, Liu JO, Zhang H, Margolick JB, Siliciano RF (2009) Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest 119:3473–3486. doi:10.1172/JCI39199

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Burnett JC, Lim KI, Calafi A, Rossi JJ, Schaffer DV, Arkin AP (2010) Combinatorial latency reactivation for HIV-1 subtypes and variants. J Virol 84:5958–5974. doi:10.1128/JVI.00161-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–182. doi:10.1016/j.cell.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  15. Jordan A, Defechereux P, Verdin E (2001) The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 20:1726–1738. doi:10.1093/emboj/20.7.1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pion M, Jordan A, Biancotto A, Dequiedt F, Gondois-Rey F, Rondeau S, Vigne R, Hejnar J, Verdin E, Hirsch I (2003) Transcriptional suppression of in vitro-integrated human immunodeficiency virus type 1 does not correlate with proviral DNA methylation. J Virol 77:4025–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1:376–382. doi:10.1006/mthe.2000.0050

    Article  CAS  PubMed  Google Scholar 

  18. Burnett JC, Miller-Jensen K, Shah PS, Arkin AP, Schaffer DV (2009) Control of stochastic gene expression by host factors at the HIV promoter. PLoS Pathog 5:e1000260. doi:10.1371/journal.ppat.1000260

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weinberger LS, Shenk T (2007) An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer. PLoS Biol 5:e9. doi:10.1371/journal.pbio.0050009

    Article  PubMed  PubMed Central  Google Scholar 

  20. Miller-Jensen K, Dey SS, Pham N, Foley JE, Arkin AP, Schaffer DV (2012) Chromatin accessibility at the HIV LTR promoter sets a threshold for NF-kappaB mediated viral gene expression. Integr Biol (Camb) 4:661–671. doi:10.1039/c2ib20009k

    Article  CAS  Google Scholar 

  21. Weinberger LS, Dar RD, Simpson ML (2008) Transient-mediated fate determination in a transcriptional circuit of HIV. Nat Genet 40:466–470. doi:10.1038/ng.116

    Article  CAS  PubMed  Google Scholar 

  22. Razooky BS, Weinberger LS (2011) Mapping the architecture of the HIV-1 Tat circuit: a decision-making circuit that lacks bistability and exploits stochastic noise. Methods 53:68–77. doi:10.1016/j.ymeth.2010.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leonard JN, Shah PS, Burnett JC, Schaffer DV (2008) HIV evades RNA interference directed at TAR by an indirect compensatory mechanism. Cell Host Microbe 4:484–494. doi:10.1016/j.chom.2008.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dey SS, Xue Y, Joachimiak MP, Friedland GD, Burnett JC, Zhou Q, Arkin AP, Schaffer DV (2012) Mutual information analysis reveals coevolving residues in Tat that compensate for two distinct functions in HIV-1 gene expression. J Biol Chem 287:7945–7955. doi:10.1074/jbc.M111.302653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bosque A, Planelles V (2011) Studies of HIV-1 latency in an ex vivo model that uses primary central memory T cells. Methods 53:54–61. doi:10.1016/j.ymeth.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9:493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Burnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jung, U., Takahashi, M., Rossi, J.J., Burnett, J.C. (2016). LGIT In Vitro Latency Model in Primary and T Cell Lines to Test HIV-1 Reactivation Compounds. In: Prasad, V., Kalpana, G. (eds) HIV Protocols. Methods in Molecular Biology, vol 1354. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3046-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3046-3_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3045-6

  • Online ISBN: 978-1-4939-3046-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics