Skip to main content

Introduction to the Use of Baculoviruses as Biological Insecticides

  • Protocol
Book cover Baculovirus and Insect Cell Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1350))

Abstract

Baculoviruses are widely used both as protein expression vectors and as insect pest control agents. This section provides an overview of the baculovirus life cycle and use of baculoviruses as insecticidal agents. This chapter includes discussion of the pros and cons for use of baculoviruses as insecticides, and progress made in genetic enhancement of baculoviruses for improved insecticidal efficacy. These viruses are used extensively for control of insect pests in a diverse range of agricultural and forest habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lacey L, Frutos R, Kaya H et al (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248

    Article  Google Scholar 

  2. Herniou E, Arif B, Becnel J et al (2011) Baculoviridae. In: King A, Adams M, Carstens E et al (eds) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier, Oxford, pp 163–174

    Google Scholar 

  3. Harrison R, Hoover K (2012) Baculoviruses and other occluded insect viruses. In: Vega F, Kaya H (eds) Insect pathology, 2nd edn. Elsevier, New York, pp 73–130

    Chapter  Google Scholar 

  4. Passarelli A (2011) Barriers to success: how baculoviruses establish efficient systemic infections. Virology 411:383–392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Possee R, Griffiths C, Hitchman R et al (2010) Baculoviruses: biology, replication and exploitation. In: Asgari S, Johnson K (eds) Insect virology. Caister Academic, Norfolk, UK, pp 35–57

    Google Scholar 

  6. Bonning B (2005) Baculoviruses: biology, biochemistry, and molecular biology. In: Gilbert L, Iatrou K, Gill S (eds) Comprehensive molecular insect science, vol 6. Elsevier, Oxford, pp 233–270

    Chapter  Google Scholar 

  7. Federici B (1997) Baculovirus pathogenesis. In: Miller L (ed) The baculoviruses. Plenum, New York, pp 33–60

    Chapter  Google Scholar 

  8. Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    Article  Google Scholar 

  9. Szewczyk B, Rabalski L, Krol E et al (2009) Baculovirus biopesticides—a safe alternative to chemical protection of plants. J Biopesticides 2:209–216

    CAS  Google Scholar 

  10. Moscardi F, Souza M, Castro M et al (2011) Baculovirus pesticides: present state and future perspectives. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology. Springer, New York, pp 415–445

    Chapter  Google Scholar 

  11. Nguyen Q, Qi Y, Wu Y et al (2011) In vitro production of Helicoverpa baculovirus biopesticides—automated selection of insect cell clones for manufacturing and systems biology studies. J Virol Methods 175:197–205

    Article  PubMed  CAS  Google Scholar 

  12. Lacey L, Arthurs S, Knight A et al (2007) Microbial control of lepidopteran pests of apple orchards. In: Lacey L, Kaya H (eds) Field manual of techniques in invertebrate pathology. Springer, New York, pp 527–546

    Chapter  Google Scholar 

  13. Steinkraus D, Young S, Gouge D et al (2007) Microbial insecticide application and evaluation: cotton. In: Lacey L, Kaya H (eds) Field manual of techniques in invertebrate pathology. Springer, New York, pp 427–455

    Chapter  Google Scholar 

  14. Frankenhuyzen K, Reardon R, Dubois N (2007) Forest defoliators. In: Lacey L, Kaya H (eds) Field manual of techniques in invertebrate pathology. Springer, New York, pp 481–504

    Chapter  Google Scholar 

  15. Moscardi F, Sosa-Gómez D (2007) Microbial control of insect pests of soybean. In: Lacey L, Kaya H (eds) Field manual of techniques in invertebrate pathology. Springer, New York, pp 411–426

    Chapter  Google Scholar 

  16. Cory J, Evans H (2007) Viruses. In: Lacey L, Kaya H (eds) Field manual of techniques in invertebrate pathology. Springer, New York, pp 149–174

    Chapter  Google Scholar 

  17. Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289

    Article  PubMed  CAS  Google Scholar 

  18. Buerger P, Hauxwell C, Murray D (2007) Nucleopolyhedrovirus introduction in Australia. Virol Sin 22:173–179

    Article  CAS  Google Scholar 

  19. Szewczyk B, de Souza M, de Castro M et al (2012) Baculovirus biopesticides. In: Larramendy M, Soloneski S (eds) Integrated pest management and pest control—current and future tactics. InTech, New York, pp 25–36

    Google Scholar 

  20. Hauxwell C (2008) Against the one hundredth locust: the commercial use of insect pathogens. Microbiol Aust 29:45–47

    Google Scholar 

  21. Sun X, Peng H (2007) Recent advances in biological control of pest insects by using viruses in China. Virol Sin 22:158–162

    Article  CAS  Google Scholar 

  22. Huber J (1986) Practical applications for insect control. In: Granados R, Frederici B (eds) The biology of baculoviruses. CRC Press, Boca Raton, FL, pp 181–202

    Google Scholar 

  23. Lacey L, Shapiro-Ilan D (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu Rev Entomol 53:121–144

    Article  PubMed  CAS  Google Scholar 

  24. Moreau G, Lucarotti C, Kettela E et al (2005) Aerial application of nucleopolyhedrovirus induces decline in increasing and peaking populations of Neodiprion abietis. Biol Control 33:65–73

    Article  Google Scholar 

  25. D’Amico V, Elkinton J, Podgwaite J et al (1999) A field release of genetically engineered gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus (LdNPV). J Invertebr Pathol 73:260–268

    Article  PubMed  Google Scholar 

  26. Ashour M, Ragheb D, El-Sheikh E et al (2007) Biosafety of recombinant and wild type nucleopolyhedroviruses as bioinsecticides. Int J Environ Res Public Health 4:111–125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Gröner A (1990) Safety to nontarget invertebrates of baculoviruses. In: Laird M, Lacey L, Davidson E (eds) Safety of microbial insecticides. CRC Press, Boca Raton, FL, pp 135–147

    Google Scholar 

  28. Lapointe R, Thumbi D, Lucarotti C (2012) Recent advances in our knowledge of baculovirus molecular biology and its relevance for the registration of baculovirus-based products for insect pest population control. In: Larramendy M, Soloneski S (eds) Integrated pest management and pest control-current and future tactics. Intech, New York, pp 481–522

    Google Scholar 

  29. Jaques R (1975) Persistence, accumulation and denaturation of nuclear polyhedrosis and granulosis viruses. In: Summers M, Engler R, Falcon L et al (eds) Baculoviruses for insect pest control: safety considerations. American Society of Microbiology, Washington D.C., pp 55–67

    Google Scholar 

  30. Kamita S, Kang K, Hammock B et al (2005) Genetically modified baculoviruses for pest insect control. In: Gilbert L, Iatrou S (eds) Comprehensive molecular insect science, vol 6. Elsevier, Oxford, pp 271–322

    Chapter  Google Scholar 

  31. Asser-Kaiser S, Radtke P, El-Salamouny S et al (2011) Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication. Virology 410:360–367

    Article  PubMed  CAS  Google Scholar 

  32. Hoover K, Kishida K, DiGiorgio L et al (1998) Inhibition of baculoviral disease by plant-mediated peroxidase activity and free radical generation. J Chem Ecol 24:1949–2001

    Article  CAS  Google Scholar 

  33. Inceoglu A, Kamita S, Hammock B (2006) Genetically modified baculoviruses: a historical overview and future outlook. Adv Virus Res 68:323–360

    Article  PubMed  CAS  Google Scholar 

  34. Miller L, Lu A (1997) The molecular basis of baculovirus host range. In: Miller L (ed) The baculoviruses. Plenum Press, New York, pp 217–235

    Chapter  Google Scholar 

  35. McIntosh A, Grasela J, Lua L et al (2004) Demonstration of the protective effects of fluorescent proteins in baculoviruses exposed to ultraviolet light inactivation. J Insect Sci 4:31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Petrik D, Iseli A, Montelone B et al (2003) Improving baculovirus resistance to UV inactivation: increased virulence resulting from expression of a DNA repair enzyme. J Invertebr Pathol 82:50–56

    Article  PubMed  CAS  Google Scholar 

  37. O’Reilly D, Kelly T, Masler E et al (1995) Overexpression of Bombyx mori prothoracicotropic hormone using baculovirus vectors. Insect Biochem Mol Biol 25:475–485

    Article  PubMed  Google Scholar 

  38. Korth K, Levings C III (1993) Baculovirus expression of the maize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae. Proc Natl Acad Sci U S A 90:3388–3392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Bonning B, Hoover K, Booth T et al (1995) Development of a recombinant baculovirus expressing a modified juvenile hormone esterase with potential for insect control. Arch Insect Biochem 30:177–194

    Article  CAS  Google Scholar 

  40. El-Sheikh E, Kamita S, Vu K et al (2011) Improved insecticidal efficacy of a recombinant baculovirus expressing mutated JH esterase from Manduca sexta. Biol Control 58:354–361

    Article  CAS  Google Scholar 

  41. King L, Possee R (1992) The baculovirus expression system: a laboratory guide. Chapman and Hall, London

    Book  Google Scholar 

  42. O’Reilly D, Miller L, Luckow V (1992) Baculovirus expression vectors: a laboratory manual. Freeman, New York

    Google Scholar 

  43. Summers M, Smith G (1987) A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agricultural Experiment Station Bulletin 1555

    Google Scholar 

  44. Jarvis D (2009) Baculovirus–insect cell expression systems. Methods Enzymol 463:191–222

    Article  PubMed  CAS  Google Scholar 

  45. Jaques R (1985) Stability of insect viruses in the environment. In: Maramorosch K, Sherman K (eds) Viral insecticides for biological control. Academic Press, Orlando, FL, pp 289–360

    Google Scholar 

  46. Popham H, Li Y, Miller L (1997) Genetic improvement of Helicoverpa zea nuclear polyhedrosis virus as a biopesticide. Biol Control 10:83–91

    Article  Google Scholar 

  47. Burden J, Hails R, Windass J et al (2000) Infectivity, speed of kill, and productivity of a baculovirus expressing the itch mite toxin Txp-1 in second and fourth instar larvae of Trichoplusia ni. J Invertebr Pathol 75:226–236

    Article  PubMed  CAS  Google Scholar 

  48. Froy O, Zilberberg N, Chejanovsky N et al (2000) Scorpion neurotoxins: structure/function relationships and application in agriculture. Pest Manag Sci 56:472–474

    Article  CAS  Google Scholar 

  49. Harrison R, Bonning B (2000) Use of scorpion neurotoxins to improve the insecticidal activity of Rachiplusia ou multicapsid nucleopolyhedrovirus. Biol Control 17:191–201

    Article  CAS  Google Scholar 

  50. Zlotkin E, Fishman Y, Elazar M (2000) AaIT: from neurotoxin to insecticide. Biochimie 82:869–881

    Article  PubMed  CAS  Google Scholar 

  51. Prikhod’ko G, Robson M, Warmke J et al (1996) Properties of three baculovirus-expressing genes that encode insect-selective toxins: m-Aga-IV, As II, and Sh I. Biol Control 7:236–244

    Article  Google Scholar 

  52. Prikhod’ko G, Popham H, Felcetto T et al (1998) Effects of simultaneous expression of two sodium channel toxin genes on the properties of baculoviruses as biopesticides. Biol Control 12:66–78

    Article  Google Scholar 

  53. Harrison R, Bonning B (2001) Use of proteases to improve the insecticidal activity of baculoviruses. Biol Control 20:199–209

    Article  CAS  Google Scholar 

  54. Bonning B, Boughton A, Jin H et al (2002) Genetic enhancement of baculovirus insecticides. In: Upadhyay R (ed) Advances in microbial control of insect pests. Kluwer Academic/Plenum, London, pp 109–125

    Chapter  Google Scholar 

  55. Hoover K, Schultz C, Lane S et al (1995) Reduction in damage to cotton plants by a recombinant baculovirus that causes moribund larvae of Heliothis virescens to fall off the plant. Biol Control 5:419–426

    Article  Google Scholar 

  56. O’Reilly D (1995) Baculovirus-encoded ecdysteroid UDP-glucosyltransferases. Insect Biochem Molec 25:541–550

    Article  Google Scholar 

  57. Chen X, Sun X, Hu Z et al (2000) Genetic engineering of Helicoverpa armigera singlenucleocapsid nucleopolyhedrovirus as an improved pesticide. J Invertebr Pathol 76:140–146

    Article  PubMed  CAS  Google Scholar 

  58. Harrison R, Puttler B, Popham H (2008) Genomic sequence analysis of a fast-killing isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus. J Gen Virol 89:775–790

    Article  PubMed  CAS  Google Scholar 

  59. O’Reilly D, Miller L (1991) Improvement of a baculovirus pesticide by deletion of the egt gene. Nat Biotechnol 9:1086–1089

    Article  Google Scholar 

  60. Chang J, Choi J, Jin B et al (2003) An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J Invertebr Pathol 84:30–37

    Article  PubMed  CAS  Google Scholar 

  61. Shim H, Choi J, Li M et al (2009) A novel recombinant baculovirus expressing insect neurotoxin and producing occlusion bodies that contain Bacillus thuringiensis Cry toxin. J Asia-Pac Entomol 12:217–220

    Article  CAS  Google Scholar 

  62. Black B, Brennan L, Dierks P et al (1997) Commercialization of baculoviral insecticides. In: Miller L (ed) The baculoviruses. Plenum, New York, pp 341–388

    Chapter  Google Scholar 

  63. Smith C, Heinz K, Sansone C et al (2000) Impact of recombinant baculovirus applications on target heliothines and nontarget predators in cotton. Biol Control 19:201–214

    Article  Google Scholar 

  64. Sun X, Wang H, Sun X et al (2004) Biological activity and field efficacy of a genetically modified Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus expressing an insect-selective toxin from a chimeric promoter. Biol Control 29:124–137

    Article  Google Scholar 

  65. Snow A, Andow D, Geptis P et al (2005) Genetically engineered organisms and the environment: current status and recommendations. Ecol Appl 15:377–404

    Article  Google Scholar 

  66. Bonsall M, O’Reilly D, Cory J et al (2005) Persistence and coexistence of engineered baculoviruses. Theor Popul Biol 67:217–230

    Article  PubMed  CAS  Google Scholar 

  67. Fuxa J (2004) Ecology of insect nucleopolyhedroviruses. Agr Ecosyst Environ 103:27–43

    Article  Google Scholar 

  68. Zwart M, Van Der Werf W, Van Oers M et al (2009) Mixed infections and the competitive fitness of faster‐acting genetically modified viruses. Evol Appl 2:209–221

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cooperative State Research, Education, and Extension Service, US Department of Agriculture, under Agreement No. 00-39210-9772 as well as Hatch Act and State of Iowa funds. The US Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly J. R. Popham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Popham, H.J.R., Nusawardani, T., Bonning, B.C. (2016). Introduction to the Use of Baculoviruses as Biological Insecticides. In: Murhammer, D. (eds) Baculovirus and Insect Cell Expression Protocols. Methods in Molecular Biology, vol 1350. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3043-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3043-2_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3042-5

  • Online ISBN: 978-1-4939-3043-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics