Skip to main content

Transforming Lepidopteran Insect Cells for Continuous Recombinant Protein Expression

  • Protocol
Baculovirus and Insect Cell Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1350))

Abstract

The baculovirus expression vector system (BEVS) is widely used to produce large quantities of recombinant proteins. However, the yields of extracellular and membrane-bound proteins obtained with this system are often very low, possibly due to the adverse effects of baculovirus infection on the host insect cell secretory pathway. An alternative approach to producing poorly expressed proteins is to transform lepidopteran insect cells with the gene of interest under the control of promoters that are constitutively active in uninfected cells, thereby making cell lines that continuously express recombinant protein. This chapter provides an overview of the methods and considerations for making stably transformed lepidopteran insect cells. Techniques for the insertion of genes into continuous expression vectors, transfection of cells, and the selection and isolation of stably transformed Sf-9 clones by either colony formation or end-point dilution are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luckow V, Summers M (1988) Trends in the development of baculovirus expression vectors. Nat Biotechnol 6:47–55

    Article  CAS  Google Scholar 

  2. O’Reilly D, Miller L, Luckow V (1992) Baculovirus expression vectors. W.H. Freeman and Company, New York

    Google Scholar 

  3. Jarvis D (1997) Baculovirus expression vectors. In: Miller L (ed) The Baculoviruses. Plenum Press, New York, pp 389–431

    Chapter  Google Scholar 

  4. Jarvis D (2009) Baculovirus-insect cell expression systems. Methods Enzymol 463:191–222

    Article  PubMed  CAS  Google Scholar 

  5. Jarvis D, Summers M (1989) Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells. Mol Cell Biol 9:214–223

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Jarvis D, Fleming J, Kovacs G et al (1990) Use of early baculovirus promoters for continuous expression and efficient processing of foreign gene products in stably transformed lepidopteran cells. Nat Biotechnol 8:950–955

    Article  CAS  Google Scholar 

  7. Guarino L, Summers M (1986) Functional mapping of a trans-activating gene required for expression of a baculovirus delayed-early gene. J Virol 57:563–571

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Guarino L, Summers M (1987) Nucleotide sequence and temporal expression of a baculovirus regulatory gene. J Virol 61:2091–2099

    PubMed  CAS  PubMed Central  Google Scholar 

  9. McCarroll L, King L (1997) Stable insect cell cultures for recombinant protein production. Curr Opin Biotechnol 8:590–594

    Article  PubMed  CAS  Google Scholar 

  10. Jarvis D, Weinkauf C, Guarino L (1996) Immediate early baculovirus vectors for foreign gene expression in transformed or infected insect cells. Protein Expr Purif 8:191–203

    Article  PubMed  CAS  Google Scholar 

  11. Pfeifer T, Hegedus D, Grigliatti T et al (1997) Baculovirus immediate-early promoter-mediated expression of the Zeocin resistance gene for use as a dominant selectable marker in dipteran and lepidopteran insect cell lines. Gene 188:183–190

    Article  PubMed  CAS  Google Scholar 

  12. McLachlin J, Miller L (1997) Stable transformation of insect cells to coexpress a rapidly selectable marker gene and an inhibitor of apoptosis. In Vitro Cell Dev Biol Anim 33:575–579

    Article  PubMed  CAS  Google Scholar 

  13. Hegedus D, Pfeifer T, Hendry J et al (1998) A series of broad host range shuttle vectors for constitutive and inducible expression of heterologous proteins in insect cell lines. Gene 207:241–249

    Article  PubMed  CAS  Google Scholar 

  14. Farrell P, Lu M, Prevost J et al (1998) High-level expression of secreted glycoproteins in transformed lepidopteran insect cells using a novel expression vector. Biotechnol Bioeng 60:656–663

    Article  PubMed  CAS  Google Scholar 

  15. Mandrioli M, Wimmer E (2003) Stable transformation of a Mamestra brassicae (lepidoptera) cell line with the lepidopteran-derived transposon piggyBac. Insect Biochem Mol Biol 33:1–5

    Article  PubMed  CAS  Google Scholar 

  16. Shi X, Harrison R, Hollister J et al (2007) Construction and characterization of new piggyBac vectors for constitutive or inducible expression of heterologous gene pairs and the identification of a previously unrecognized activator sequence in piggyBac. BMC Biotechnol 7:5–21

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xue R, Li X, Zhao Y et al (2009) Elementary research into the transformation BmN cells mediated by the piggyBac transposon vector. J Biotechnol 144:272–278

    Article  PubMed  CAS  Google Scholar 

  18. Aslanidi G, Lamb K, Zolotukhin S (2009) An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells. Proc Natl Acad Sci U S A 106:5059–5064

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Hopkins R, Esposito D (2009) A rapid method for titrating baculovirus stocks using the Sf9 Easy Titer cell line. Biotechniques 47:785–788

    Article  PubMed  CAS  Google Scholar 

  20. Lopez M, Alfonso V, Carrillo E et al (2010) Trans-complementation of polyhedrin by a stably transformed Sf9 insect cell line allows occ-baculovirus occlusion and larval per os infectivity. J Biotechnol 145:199–205

    Article  PubMed  CAS  Google Scholar 

  21. Hollister J, Jarvis D (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian β1,4-galactosyltransferase and α2,6-sialyltransferase genes. Glycobiology 11:1–9

    Article  PubMed  CAS  Google Scholar 

  22. Keith M, Farrell P, Iatrou K et al (1999) Screening of transformed insect cell lines for recombinant protein production. Biotechnol Prog 15:1046–1052

    Article  PubMed  CAS  Google Scholar 

  23. Kwon M, Kato T, Dojima T et al (2005) Application of a radial-flow bioreactor in the production of beta1,3-N-acetylglucosaminyltransferase-2 fused with GFPuv using stably transformed insect cell lines. Biotechnol Appl Biochem 42:41–46

    Article  PubMed  CAS  Google Scholar 

  24. Jardin B, Montes J, Lanthier S et al (2007) High cell density fed batch and perfusion processes for stable non-viral expression of secreted alkaline phosphatase (SEAP) using insect cells: comparison to a batch Sf9-BEV system. Biotechnol Bioeng 97:332–345

    Article  PubMed  CAS  Google Scholar 

  25. Carson D, Guarino L, Summers M (1988) Functional mapping of an AcNPV immediately early gene which augments expression of the IE-1 trans-activated 39K gene. Virology 162:444–451

    Article  PubMed  CAS  Google Scholar 

  26. Lu M, Farrell P, Johnson R et al (1997) A baculovirus (Bombyx mori nuclear polyhedrosis virus) repeat element functions as a powerful constitutive enhancer in transfected insect cells. J Biol Chem 272:30724–30728

    Article  PubMed  CAS  Google Scholar 

  27. Aumiller J, Mabashi-Asazuma H, Hillar A et al (2012) A new glycoengineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway. Glycobiology 22:417–428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Kimura M, Yamaguchi I (1996) Recent development in the use of Blasticidin S, a microbial fungicide, as a useful reagent in molecular biology. Pestic Biochem Physiol 56:243–248

    Article  CAS  Google Scholar 

  29. Jarvis D, Guarino L (1995) Continuous foreign gene expression in transformed lepidopteran insect cells. In: Richardson C (ed) Baculovirus expression protocols, vol 39. Humana Press, Clifton, NJ, pp 187–202

    Chapter  Google Scholar 

  30. Sarkar A, Sim C, Hong Y et al (2003) Molecular evolutionary analysis of the widespread piggyBac transposon family and related “domesticated” sequences. Mol Genet Genomics 270:173–180

    Article  PubMed  CAS  Google Scholar 

  31. Lynch A, Tanzer F, Fraser M et al (2010) Use of the piggyBac transposon to create HIV-1 gag transgenic insect cell lines for continuous VLP production. BMC Biotechnol 10:30–42

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kato T, Yoshizuka K, Park E (2010) New strategy for rapid isolation of stable cell lines from DNA-transformed insect cells using fluorescence activated cell-sorting. J Biotechnol 147:102–107

    Article  PubMed  CAS  Google Scholar 

  33. Jarvis D (1993) Effects of baculovirus infection on IE1-mediated foreign gene expression in stably transformed insect cells. J Virol 67:2583–2591

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Breitbach K, Jarvis D (2001) Improved glycosylation of a foreign protein by Tn-5B1-4 cells engineered to express mammalian glycosyltransferases. Biotechnol Bioeng 74:230–239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Aumiller J, Hollister J, Jarvis D (2003) A transgenic lepidopteran insect cell line engineered to produce CMP-sialic acid and sialoglycoproteins. Glycobiology 13:497–507

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Birnboim H, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Sambrook J, Russell D (2001) Purification of closed circular DNA by equilibrium centrifugation in CsCl-ethidium bromide gradients: continuous gradients. In: Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1.65–1.68

    Google Scholar 

  38. Summers M, Smith G (1987) A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agricultural Experiment Station bull no 1555

    Google Scholar 

  39. Pfeifer T (1998) Expression of heterologous proteins in stable insect cell culture. Curr Opin Biotechnol 9:518–521

    Article  PubMed  CAS  Google Scholar 

  40. Luckow V, Summers M (1988) Signals important for high-level expression of foreign genes in Autographa californica nuclear polyhedrosis virus expression vectors. Virology 167:56–71

    Article  PubMed  CAS  Google Scholar 

  41. Beames B, Summers M (1988) Comparisons of host cell DNA insertions and altered transcription at the site of insertions in few polyhedra baculovirus mutants. Virology 162:206–220

    Article  PubMed  CAS  Google Scholar 

  42. Beames B, Summers M (1989) Location and nucleotide sequence of the 25 K protein missing from baculovirus few polyhedra (FP) mutants. Virology 168:344–353

    Article  PubMed  CAS  Google Scholar 

  43. Harrison R, Jarvis D, Summers M (1996) The role of the AcMNPV 25K gene, “FP25”, in baculovirus polh and p10 expression. Virology 226:34–46

    Article  PubMed  CAS  Google Scholar 

  44. Gilman M (1993) Ribonuclease protection assay. In: Ausubel F, Brent R, Kingston R et al (eds) Current protocols in molecular biology, vol 1. Wiley, New York, pp 4.7.1–4.7.8

    Google Scholar 

  45. Scotto-Lavino E, Du G, Frohman M (2006) 5′ end cDNA amplification using classic RACE. Nat Protoc 1:2555–2562

    Article  PubMed  CAS  Google Scholar 

  46. Jarvik J, Telmer C (1998) Epitope tagging. Annu Rev Genet 32:601–618

    Article  PubMed  CAS  Google Scholar 

  47. Jarvis D, Bohlmeyer D, Garcia A (1991) Requirements for nuclear localization and supramolecular assembly of a baculovirus polyhedrin protein. Virology 185:795–810

    Article  PubMed  CAS  Google Scholar 

  48. Harrison R, Summers M (1995) Biosynthesis and localization of the Autographa californica nuclear polyhedrosis virus 25K gene product. Virology 208:279–288

    Article  PubMed  CAS  Google Scholar 

  49. Yamada K, Nakajima Y, Natori S (1990) Production of recombinant sarcotoxin IA in Bombyx mori cells. Biochem J 272:633–636

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Pyle L, Barton P, Fujiwara Y et al (1995) Secretion of biologically active human proapolipoprotein A-I in a baculovirus-insect cell system: protection from degradation by protease inhibitors. J Lipid Res 36:2355–2361

    PubMed  CAS  Google Scholar 

  51. Kato T, Murata T, Usui T et al (2004) Comparative analysis of GFP(UV)-beta1,3-N-acetylglucosaminyltransferase 2 production in two insect-cell-based expression systems. Protein Expr Purif 35:54–61

    Article  PubMed  CAS  Google Scholar 

  52. Wickham T, Davis T, Granados R et al (1992) Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog 8:391–396

    Article  PubMed  CAS  Google Scholar 

  53. Joyce K, Atkinson A, Bermude I et al (1993) Synthesis of functional GABAA receptors in stable insect cell lines. FEBS Lett 335:61–64

    Article  PubMed  CAS  Google Scholar 

  54. Kleymann G, Boege F, Hahn M et al (1993) Human beta 2-adrenergic receptor produced in stably transformed insect cells is functionally coupled via endogenous GTP-binding protein to adenylyl cyclase. Eur J Biochem 213:797–804

    Article  PubMed  CAS  Google Scholar 

  55. Vaughn J, Goodwin R, Thompkins G et al (1977) The establishment of two insect cell lines from the insect Spodoptera frugiperda (Lepidoptera:Noctuidae). In Vitro 13:213–217

    Article  PubMed  CAS  Google Scholar 

  56. Ivanova M, Mattingly K, Klinge C (2007) Estrogen receptor beta yield from baculovirus lytic infection is higher than from stably transformed Sf21 cells. Appl Microbiol Biotechnol 74:1256–1263

    Article  PubMed  CAS  Google Scholar 

  57. Murhammer D, Goochee C (1988) Scaleup of insect cell cultures: protective effects of Pluronic F-68. Nat Biotechnol 6:1411–1418

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D.L.J. gratefully acknowledges the NIH (GM49734), the NSF (BES-9814157 and BES-9818001), and the USDA-NRI (89-37266-4935 and 95-37302-1921/2658) for supporting work in his lab. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Harrison, R.L., Jarvis, D.L. (2016). Transforming Lepidopteran Insect Cells for Continuous Recombinant Protein Expression. In: Murhammer, D. (eds) Baculovirus and Insect Cell Expression Protocols. Methods in Molecular Biology, vol 1350. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3043-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3043-2_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3042-5

  • Online ISBN: 978-1-4939-3043-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics