Skip to main content

Production of Virus-Like Particles for Vaccination

  • Protocol
Baculovirus and Insect Cell Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1350))

Abstract

The ability to make a large variety of virus-like particles (VLPs) has been successfully achieved in the baculovirus expression vector system (BEVS)/insect cell system. The production and scale-up of these particles, which are mostly sought as vaccine candidates, are currently being addressed. Furthermore, these VLPs are being investigated as delivery agents for use as therapeutics. The use of host insect cells allows mass production of VLPs in a proven scalable system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vicente T, Roldão A, Peixoto C et al (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107:S42–S48

    Article  PubMed  CAS  Google Scholar 

  2. Roldão A, Mellado M, Castilho L et al (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9:1149–1176

    Article  PubMed  Google Scholar 

  3. Mena J, Kamen A (2011) Insect cell technology as a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 10:1063–1081

    Article  PubMed  CAS  Google Scholar 

  4. Zheng Y, Greenfield P, Reid S (1999) Optimized production of recombinant bluetongue core-like particles produced by the baculovirus expression system. Biotechnol Bioeng 65:600–604

    Article  PubMed  CAS  Google Scholar 

  5. Maranga L, Cruz P, Aunins J et al (2002) Production of core and virus-like particles with baculovirus infected cells. Adv Biochem Eng Biotechnol 74:183–206

    PubMed  CAS  Google Scholar 

  6. Palomares L, Ramírez O (2009) Challenges for the production of virus-like particles in insect cells: the case of rotavirus-like particles. Biochem Eng J 45:158–167

    Article  CAS  Google Scholar 

  7. Roldão A, Vieira H, Charpilienne A et al (2007) Modeling rotavirus-like particles production in a baculovirus expression vector system: infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production. J Biotechnol 128:875–894

    Article  PubMed  Google Scholar 

  8. Palomares L, Lopez S, Ramirez O (2002) Strategies for manipulating the relative concentration of recombinant rotavirus structural proteins during simultaneous production by insect cells. Biotechnol Bioeng 78:635–644

    Article  PubMed  CAS  Google Scholar 

  9. Jiang B, Barniak V, Smith R et al (1998) Synthesis of rotavirus-like particles in insect cells: comparative and quantitative analysis. Biotechnol Bioeng 60:369–374

    Article  PubMed  CAS  Google Scholar 

  10. Park J, Kim H, Hwang H et al (2004) Large-scale production of rotavirus VLP as vaccine candidate using Baculovirus Expression Vector System (BEVS). J Microbiol Biotechnol 14:35–40

    Google Scholar 

  11. Shelly D, Cleave V (2009) Parvovirus B19 VLP vaccine manufacturing. Genet Eng Biotechnol News 29:1–4

    Google Scholar 

  12. Tsao E, Mason M, Cacciuttolo M et al (1996) Production of parvovirus B19 vaccine in insect cells co-infected with double baculoviruses. Biotechnol Bioeng 49:130–138

    Article  PubMed  CAS  Google Scholar 

  13. Maranga L, Brazao T, Carrondo M (2003) Virus-like particle production at low multiplicities of infection with the baculovirus insect cell system. Biotechnol Bioeng 84:245–253

    Article  PubMed  CAS  Google Scholar 

  14. Maranga L, Cunha A, Clemente J et al (2004) Scale-up of virus-like particles production: effects of sparging, agitation and bioreactor scale on cell growth, infection kinetics and productivity. J Biotechnol 107:55–64

    Article  PubMed  CAS  Google Scholar 

  15. Maranga L, Rueda P, Antonis A et al (2002) Large scale production and downstream processing of a recombinant porcine parvovirus vaccine. Appl Microbiol Biotechnol 59:45–50

    Article  PubMed  CAS  Google Scholar 

  16. Cruz P, Maranga L, Carrondo M (2002) Integrated process optimization: lessons from retrovirus and virus-like particle production. J Biotechnol 99:199–214

    Article  PubMed  CAS  Google Scholar 

  17. Pillay S, Meyers A (2009) Optimization of chimeric HIV-1 virus-like-particle production in a baculovirus-insect cell expression system. Biotechnol Prog 25:1153–1160

    Article  PubMed  CAS  Google Scholar 

  18. Cruz P, Cunha A, Peixoto C et al (1998) Optimization of the production of virus-like particles in insect cells. Biotechnol Bioeng 60:408–418

    Article  PubMed  CAS  Google Scholar 

  19. Hu Y, Bentley W (2009) Enhancing yield of infectious bursal disease virus structural proteins in baculovirus expression systems: focus on media, protease inhibitors, and dissolved oxygen. Biotechnol Prog 15:1065–1071

    Article  Google Scholar 

  20. Hu Y, Bentley W (2000) A kinetic and statistical-thermodynamic model for baculovirus infection and virus-like particle assembly in suspended insect cells. Chem Eng Sci 55:3991–4008

    Article  CAS  Google Scholar 

  21. Haynes J (2009) Influenza virus-like particle vaccines. Expert Rev Vaccines 8:435–445

    Article  PubMed  CAS  Google Scholar 

  22. Krammer F, Schinko T, Palmberger D et al (2010) Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol 45:226–234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Sun Y, Carrion R Jr, Ye L et al (2009) Protection against lethal challenge by Ebola virus-like particles produced in insect cells. Virology 383:12–21

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Sokolenko S, George S, Wagner A et al (2012) Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: benefits and drawbacks. Biotechnol Adv 30:766–781

    Article  PubMed  CAS  Google Scholar 

  25. Haynes J, Dokken L, Wiley J et al (2009) Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine 27:530–541

    Article  PubMed  CAS  Google Scholar 

  26. Pushko P, Tumpey T, Bu F et al (2005) Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 23:5751–5759

    Article  PubMed  CAS  Google Scholar 

  27. Ghosh S, Parvez K, Banerjee K et al (2000) Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. Mol Ther 6:5–11

    Article  Google Scholar 

  28. Urabe M, Ding C, Kotin R (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13:1935–1943

    Article  PubMed  CAS  Google Scholar 

  29. Meghrous J, Aucoin M, Jacob D et al (2005) Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell suspension culture system: from shake flasks to a 20-L bioreactor. Biotechnol Prog 21:154–160

    Article  PubMed  CAS  Google Scholar 

  30. Aucoin MG, Perrier M, Kamen AA (2006) Production of adeno-associated viral vectors in insect cells using triple infection: optimization of baculovirus concentration ratios. Biotechnol Bioeng 95:1081–1092

    Article  PubMed  CAS  Google Scholar 

  31. Aucoin MG, Perrier M, Kamen AA (2007) Improving AAV vector yield in insect cells by modulating the temperature after infection. Biotechnol Bioeng 97:1501–1509

    Article  PubMed  CAS  Google Scholar 

  32. Kamen AA, Bédard C, Tom R et al (1996) On-line monitoring of respiration in recombinant-baculovirus-infected and uninfected insect cell bioreactor cultures. Biotechnol Bioeng 50:36–48

    Article  PubMed  CAS  Google Scholar 

  33. Latham T, Galarza JM (2001) Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. Society 75:6154–6165

    CAS  Google Scholar 

  34. Peixoto CC, Sousa MFQ, Silva AC et al (2007) Downstream processing of triple layered rotavirus like particles. J Biotechnol 127:452–461

    Article  PubMed  CAS  Google Scholar 

  35. Aucoin MG, Mena JA, Kamen AA (2010) Bioprocessing of baculovirus vectors: a review. Curr Gene Ther 10:174–186

    Article  PubMed  CAS  Google Scholar 

  36. Pushko P, Pearce MB, Ahmad A et al (2011) Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and protect from multiple influenza types and subtypes. Vaccine 29:5911–5918

    Article  PubMed  CAS  Google Scholar 

  37. Chahal PS, Aucoin MG, Kamen AA (2007) Primary recovery and chromatographic purification of adeno-associated virus type 2 produced by baculovirus/insect cell system. J Virol Methods 139:61–70

    Article  PubMed  CAS  Google Scholar 

  38. Aucoin MG, Perrier M, Kamen AA (2008) Critical assessment of current adeno-associated viral vector production and quantification methods. Biotechnol Adv 26:73–88

    Article  PubMed  CAS  Google Scholar 

  39. Mena JA, Aucoin MG, Montes J et al (2010) Improving adeno-associated vector yield in high density insect cell cultures. J Gene Med 12:157–167

    Article  PubMed  CAS  Google Scholar 

  40. Ishizu K, Watanabe H, Han S et al (2001) Roles of disulfide linkage and calcium ion-mediated interactions in assembly and disassembly of virus-like particles composed of simian virus 40 VP1 capsid protein roles of disulfide linkage and calcium ion-mediated interactions in assembly and disassembly of virus-like particles composed of simian virus 40 VP1 capsid protein. J Virol 75:61–72

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Chun S, Li C, Van Domselaar G et al (2008) Universal antibodies and their applications to the quantitative determination of virtually all subtypes of the influenza a viral hemagglutinins. Vaccine 26:6068–6076

    Article  PubMed  CAS  Google Scholar 

  42. Alain R, Nadon F, Séguin C et al (1987) Rapid virus subunit visualization by direct sedimentation of samples on electron microscope grids. J Virol Methods 16:209–216

    Article  PubMed  CAS  Google Scholar 

  43. Goldsmith CS, Miller SE (2009) Modern uses of electron microscopy for detection of viruses. Clin Microbial Rev 22:552–563

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Johnny Montes, Emma Petiot, Parminder Chahal, Alice Bernier, and Julia Transfiguracion for their helpful advice and input throughout the writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Aucoin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thompson, C.M., Aucoin, M.G., Kamen, A.A. (2016). Production of Virus-Like Particles for Vaccination. In: Murhammer, D. (eds) Baculovirus and Insect Cell Expression Protocols. Methods in Molecular Biology, vol 1350. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3043-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3043-2_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3042-5

  • Online ISBN: 978-1-4939-3043-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics