Tracking Mitochondrial DNA In Situ

  • Anna Ligasová
  • Karel KobernaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1351)


The methods of the detection of (1) non-labeled and (2) BrdU-labeled mitochondrial DNA (mtDNA) are described. They are based on the production of singlet oxygen by monovalent copper ions and the subsequent induction of DNA gaps. The ends of interrupted DNA serve as origins for the labeling of mtDNA by DNA polymerase I or they are utilized by exonuclease that degrades DNA strands, unmasking BrdU in BrdU-labeled DNA. Both methods are sensitive approaches without the need of additional enhancement of the signal or the use of highly sensitive optical systems.

Key words

Mitochondrial DNA Mitochondrial DNA replication Copper ions Biotin-16-dUTP Singlet oxygen 



This work was supported by the Technology Agency of the Czech Republic (TA03010598, TA03010719, and TE02000058), the Ministry of Health of the Czech Republic [AZV 15-31604A] and the Ministry of Education, Youth and Sports (LO1304).


  1. 1.
    Dellinger M, Geze M (2001) Detection of mitochondrial DNA in living animal cells with fluorescence microscopy. J Microsc 204:196–202CrossRefPubMedGoogle Scholar
  2. 2.
    Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN (2003) Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14:1583–1596CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ashley N, Harris D, Poulton J (2005) Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Exp Cell Res 303:432–446CrossRefPubMedGoogle Scholar
  4. 4.
    Bereiter-Hahn J, Vöth M (1996) Distribution and dynamics of mitochondrial nucleoids in animal cells in culture. EBO 1:1–17CrossRefGoogle Scholar
  5. 5.
    Kasashima K, Nagao Y, Endo H (2014) Dynamic regulation of mitochondrial genome maintenance in germ cells. Reprod Med Biol 13:11–20CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    van Zandvoort MA, de Grauw CJ, Gerritsen HC, Broers JL, oude Egbrink MG, Ramaekers FC, Slaaf DW (2002) Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of SYTO13 in healthy and apoptotic cells. Cytometry 47:226–235CrossRefPubMedGoogle Scholar
  7. 7.
    Hayashi J, Takemitsu M, Goto Y, Nonaka I (1994) Human mitochondria and mitochondrial genome function as a single dynamic cellular unit. J Cell Biol 125:43–50CrossRefPubMedGoogle Scholar
  8. 8.
    Iborra FJ, Kimura H, Cook PR (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol 2:9CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Margineantu DH, Gregory Cox W, Sundell L, Sherwood SW, Beechem JM, Capaldi RA (2002) Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion 1:425–435CrossRefPubMedGoogle Scholar
  10. 10.
    van de Corput MP, van den Ouweland JM, Dirks RW, Hart LM, Bruining GJ, Maassen JA, Raap AK (1997) Detection of mitochondrial DNA deletions in human skin fibroblasts of patients with Pearson’s syndrome by two-color fluorescence in situ hybridization. J Histochem Cytochem 45:55–61CrossRefPubMedGoogle Scholar
  11. 11.
    Davis AF, Clayton DA (1996) In situ localization of mitochondrial DNA replication in intact mammalian cells. J Cell Biol 135:883–893CrossRefPubMedGoogle Scholar
  12. 12.
    Haines KM, Feldman EL, Lentz SI (2010) Visualization of mitochondrial DNA replication in individual cells by EdU signal amplification. J Vis Exp 45:e2147Google Scholar
  13. 13.
    Magnusson J, Orth M, Lestienne P, Taanman JW (2003) Replication of mitochondrial DNA occurs throughout the mitochondria of cultured human cells. Exp Cell Res 289:133–142CrossRefPubMedGoogle Scholar
  14. 14.
    Cristofoli WA, Wiebe LI, De Clercq E, Andrei G, Snoeck R, Balzarini J, Knaus EE (2007) 5-alkynyl analogs of arabinouridine and 2′-deoxyuridine: cytostatic activity against herpes simplex virus and varicella-zoster thymidine kinase gene-transfected cells. J Med Chem 50:2851–2857CrossRefPubMedGoogle Scholar
  15. 15.
    Diermeier-Daucher S, Clarke ST, Hill D, Vollmann-Zwerenz A, Bradford JA, Brockhoff G (2009) Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry A 75:535–546CrossRefPubMedGoogle Scholar
  16. 16.
    Kohlmeier F, Maya-Mendoza A, Jackson DA (2013) EdU induces DNA damage response and cell death in mESC in culture. Chromosome Res 21:87–100CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Meneni S, Ott I, Sergeant CD, Sniady A, Gust R, Dembinski R (2007) 5-Alkynyl-2′-deoxyuridines: chromatography-free synthesis and cytotoxicity evaluation against human breast cancer cells. Bioorg Med Chem 15:3082–3088CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhao H, Halicka HD, Li J, Biela E, Berniak K, Dobrucki J, Darzynkiewicz Z (2013) DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2′-deoxyuridine incorporated into DNA. Cytometry A 83:979–988CrossRefPubMedGoogle Scholar
  19. 19.
    Ligasová A, Strunin D, Friedecký D, Adam T, Koberna K (2015) A Fatal Combination: A Thymidylate Synthase Inhibitor with DNA Damaging Activity. PLoS One 10(2):e0117459Google Scholar
  20. 20.
    Calkins MJ, Reddy PH (2011) Assessment of newly synthesized mitochondrial DNA using BrdU labeling in primary neurons from Alzheimer’s disease mice: Implications for impaired mitochondrial biogenesis and synaptic damage. Biochim Biophys Acta 1812:1182–1189CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tkatchenko AV (2006) Whole-mount BrdU staining of proliferating cells by DNase treatment: application to postnatal mammalian retina. BioTechniques 40(29–30):32Google Scholar
  22. 22.
    Ligasova A, Strunin D, Koberna K (2013) A new method of the visualization of the double-stranded mitochondrial and nuclear DNA. PLoS One 8:e66864CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ligasová A, Strunin D, Liboska R, Rosenberg I, Koberna K (2012) Atomic Scissors: A New Method of Tracking the 5-Bromo-2′-Deoxyuridine-Labeled DNA In Situ. PLoS ONE 7(12):e52584Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Medicine, Institute of Molecular and Translational MedicinePalacký UniversityOlomoucCzech Republic

Personalised recommendations