Scalable Isolation of Mammalian Mitochondria for Nucleic Acid and Nucleoid Analysis

  • Ken-Wing Lee
  • Daniel F. BogenhagenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1351)


Isolation of mitochondria from cultured cells and animal tissues for analysis of nucleic acids and bona fide mitochondrial nucleic acid binding proteins and enzymes is complicated by contamination with cellular nucleic acids and their adherent proteins. Protocols presented here allow for quick isolation of mitochondria from a small number of cells and for preparation of highly purified mitochondria from a larger number of cells using nuclease treatment and high salt washing of mitochondria to reduce contamination. We further describe a method for the isolation of mitochondrial DNA–protein complexes known as nucleoids from these highly purified mitochondria using a combination of glycerol gradient sedimentation followed by isopycnic centrifugation in a non-ionic iodixanol gradient.

Key words

Mitochondria mtDNA nucleoids Mitochondrial RNA 


  1. 1.
    Ernster L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91:227s–255sCrossRefPubMedGoogle Scholar
  2. 2.
    Matthews D, Hessler R, Denslow N, Edwards J, O’Brien T (1982) Protein composition of the bovine mitochondrial ribosome. J Biol Chem 257:8788–8794PubMedGoogle Scholar
  3. 3.
    O’Brien, T W (1971). The General Occurrence of 55 S Ribosomes in Mammalian Liver Mitochondria. J Biol Chem 246: 3409–3417Google Scholar
  4. 4.
    Gelfand R, Attardi G (1981) Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable. Mol Cell Biol 1:497–511CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bogenhagen D, Clayton DA (1974) The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. J Biol Chem 249:7991–7995PubMedGoogle Scholar
  6. 6.
    Kellems RE, Allison VF, Butow RA (1975) Cytoplasmic type 80S ribosomes associated with yeast mitochondria. V Attachment of ribosomes to the outer membrane of isolated mitochondria IV. J Cell Biol 65:1–14CrossRefPubMedGoogle Scholar
  7. 7.
    Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509CrossRefPubMedGoogle Scholar
  8. 8.
    Higuchi Y, Linn S (1995) Purification of all forms of HeLa cell mitochondrial DNA and assessment of damage to it caused by hydrogen peroxide treatment of mitochondria or cells. J Biol Chem 270:7950–7956CrossRefPubMedGoogle Scholar
  9. 9.
    Enriquez J, Fernandez-Silva P, Perez-Martos A, Lopez-Perez M, Montoya J (1996) The synthesis of mRNA in isolated mitochondria can be maintained for several hours and is inhibited by high levels of ATP. Eur J Biochem 237:601–610CrossRefPubMedGoogle Scholar
  10. 10.
    Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X, Mootha VK, Mann M (2006) A mammalian organelle map by protein correlation profiling. Cell 125:187–199CrossRefPubMedGoogle Scholar
  11. 11.
    Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee K-W, Bogenhagen DF (2014) Assignment of 2′-O-methyltransferases to modification sites on the mammalian mitochondrial large subunit 16S rRNA. J Biol Chem 289:24936–24942CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee K-W, Okot-Kotber C, LaComb JF, Bogenhagen DF (2013) Mitochondrial rRNA methyltransferase family members are positioned to modify nascent rRNA in foci near the mtDNA nucleoid. J Biol Chem 288: 31386–31399Google Scholar
  14. 14.
    Bogenhagen DF, Martin DW, Koller A (2014) Initial steps in RNA processing and ribosome assembly occur at mitochondrial DNA nucleoids. Cell Metab 19:618–629CrossRefPubMedGoogle Scholar
  15. 15.
    Wang Y, Bogenhagen DF (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281:25791–25802CrossRefPubMedGoogle Scholar
  16. 16.
    Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, Chacinska A, Darshi M, Deckers M, Hoppins S, Icho T, Jakobs S, Ji J, Kozjak-Pavlovic V, Meisinger C, Odgren PR, Park SK, Rehling P, Reichert AS, Sheikh MS, Taylor SS, Tsuchida N, van der Bliek AM, van der Klei IJ, Weissman JS, Westermann B, Zha J, Neupert W, Nunnari J (2014) Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J Cell Biol 204:1083–1086CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Reyes A, He J, Mao CC, Bailey LJ, Di Re M, Sembongi H, Kazak L, Dzionek K, Holmes JB, Cluett TJ, Harbour ME, Fearnley IM, Crouch RJ, Conti MA, Adelstein RS, Walker JE, Holt IJ (2011) Actin and myosin contribute to mammalian mitochondrial DNA maintenance. Nucleic Acids Res 39:5098–5108CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Pharmacological SciencesStony Brook UniversityStony BrookUSA
  2. 2.Memorial Sloan Kettering Cancer InstituteNew YorkUSA

Personalised recommendations