Advertisement

Biolayer Interferometry: A Novel Method to Elucidate Protein–Protein and Protein–DNA Interactions in the Mitochondrial DNA Replisome

  • Grzegorz L. Ciesielski
  • Vesa P. Hytönen
  • Laurie S. KaguniEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1351)

Abstract

A lack of effective treatment for mitochondrial diseases prompts scientists to investigate the molecular processes that underlie their development. The major cause of mitochondrial diseases is dysfunction of the sole mitochondrial DNA polymerase, DNA polymerase γ (Pol γ). The development of treatment strategies will require a detailed characterization of the molecular properties of Pol γ. A novel technique, biolayer interferometry, allows one to monitor molecular interactions in real time, thus providing an insight into the kinetics of the process. Here, we present an application of the biolayer interferometry technique to characterize the fundamental reactions that Pol γ undergoes during the initiation phase of mitochondrial DNA replication: holoenzyme formation and binding to the primer-template.

Key words

Biolayer interferometry Protein–protein interactions Mitochondria Mitochondrial replisome 

Notes

Acknowledgments

This work was supported by grant GM45295 from the National Institutes of Health, and funds from the University of Tampere to L.S.K. G.C. was supported in part by Biocenter Finland. V.H. was supported by the Academy of Finland (grants 136288 and 273192). We acknowledge infrastructure support from Biocenter Finland.

References

  1. 1.
    Copeland WC (2014) Defects of mitochondrial DNA replication. J Child Neurol 29(9):1216–1224CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Raimundo N (2014) Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med 20:282–292CrossRefPubMedGoogle Scholar
  3. 3.
    Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128CrossRefPubMedGoogle Scholar
  4. 4.
    Fujii T, Nozaki F, Saito K, Hayashi A, Nishigaki Y, Murayama K, Tanaka M, Koga Y, Hiejima I, Kumada T (2014) Efficacy of pyruvate therapy in patients with mitochondrial disease: a semi-quantitative clinical evaluation study. Mol Genet Metab 112:133–138CrossRefPubMedGoogle Scholar
  5. 5.
    Pirinen E, Canto C, Jo YS, Morato L, Zhang H, Menzies KJ, Williams EG, Mouchiroud L, Moullan N, Hagberg C, Li W, Timmers S, Imhof R, Verbeek J, Pujol A, van Loon B, Viscomi C, Zeviani M, Schrauwen P, Sauve AA, Schoonjans K, Auwerx J (2014) Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab 19:1034–1041CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pagano G, Talamanca AA, Castello G, Cordero MD, d’Ischia M, Gadaleta MN, Pallardo FV, Petrovic S, Tiano L, Zatterale A (2014) Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. Oxid Med Cell Longev 2014:541230CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Russell O, Turnbull D (2014) Mitochondrial DNA disease-molecular insights and potential routes to a cure. Exp Cell Res 325:38–43CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Graves SW, Johnson AA, Johnson KA (1998) Expression, purification, and initial kinetic characterization of the large subunit of the human mitochondrial DNA polymerase. Biochemistry 37:6050–6058CrossRefPubMedGoogle Scholar
  9. 9.
    Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13:659–671CrossRefPubMedGoogle Scholar
  10. 10.
    Lee YS, Kennedy WD, Yin YW (2009) Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell 139:312–324CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yakubovskaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF (2006) Functional human mitochondrial DNA polymerase gamma forms a heterotrimer. J Biol Chem 281:374–382CrossRefPubMedGoogle Scholar
  12. 12.
    Fan L, Kim S, Farr CL, Schaefer KT, Randolph KM, Tainer JA, Kaguni LS (2006) A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase. J Mol Biol 358:1229–1243CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Carrodeguas JA, Pinz KG, Bogenhagen DF (2002) DNA binding properties of human pol gammaB. J Biol Chem 277:50008–50014CrossRefPubMedGoogle Scholar
  14. 14.
    Lee YS, Lee S, Demeler B, Molineux IJ, Johnson KA, Yin YW (2010) Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. J Biol Chem 285:1490–1499CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Concepcion J, Witte K, Wartchow C, Choo S, Yao D, Persson H, Wei J, Li P, Heidecker B, Ma W, Varma R, Zhao LS, Perillat D, Carricato G, Recknor M, Du K, Ho H, Ellis T, Gamez J, Howes M, Phi-Wilson J, Lockard S, Zuk R, Tan H (2009) Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb Chem High Throughput Screen 12:791–800CrossRefPubMedGoogle Scholar
  16. 16.
    Wallner J, Lhota G, Jeschek D, Mader A, Vorauer-Uhl K (2013) Application of bio-layer interferometry for the analysis of protein/liposome interactions. J Pharm Biomed Anal 72:150–154CrossRefPubMedGoogle Scholar
  17. 17.
    Prischi F, Konarev PV, Iannuzzi C, Pastore C, Adinolfi S, Martin SR, Svergun DI, Pastore A (2010) Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Nat Commun 1:95CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kuper J, Wolski SC, Michels G, Kisker C (2012) Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J 31:494–502CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Johnson AA, Tsai Y, Graves SW, Johnson KA (2000) Human mitochondrial DNA polymerase holoenzyme: reconstitution and characterization. Biochemistry 39:1702–1708CrossRefPubMedGoogle Scholar
  20. 20.
    Lim SE, Longley MJ, Copeland WC (1999) The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 274:38197–38203CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Grzegorz L. Ciesielski
    • 1
  • Vesa P. Hytönen
    • 1
    • 2
  • Laurie S. Kaguni
    • 1
    • 3
    Email author
  1. 1.Institute of Biosciences and Medical TechnologyUniversity of TampereTampereFinland
  2. 2.Fimlab LaboratoriesTampereFinland
  3. 3.Department of Biochemistry and Molecular Biology, Center for Mitochondrial Science and MedicineMichigan State UniversityEast LansingUSA

Personalised recommendations