Advertisement

Generation of Xenomitochondrial Embryonic Stem Cells for the Production of Live Xenomitochondrial Mice

  • Ian A. Trounce
  • Jessica Ackerley
  • Matthew McKenzieEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1351)

Abstract

The unique features of the mitochondrial genome, such as its high copy number and lack of defined mechanisms of recombination, have hampered efforts to manipulate its sequence to create specific mutations in mouse mtDNA. As such, the generation of in vivo mouse models of mtDNA disease has proved technically challenging. This chapter describes a unique approach to create mitochondrial oxidative phosphorylation (OXPHOS) defects in mouse ES cells by transferring mtDNA from different murid species into Mus musculus domesticus ES cells using cytoplasmic hybrid (“cybrid”) fusion. The resulting “xenocybrid” ES cells carry OXPHOS defects of varying severity, and can be utilized to generate live mouse models of mtDNA disease.

Key words

Mouse Xenocybrid Fusion Fibroblasts Embryonic stem cells 

References

  1. 1.
    Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14:146–151CrossRefPubMedGoogle Scholar
  2. 2.
    Meirelles FV, Smith LC (1998) Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos. Genetics 148:877–883PubMedPubMedCentralGoogle Scholar
  3. 3.
    Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 16:93–95CrossRefPubMedGoogle Scholar
  4. 4.
    Meirelles FV, Smith LC (1997) Mitochondrial genotype segregation in a mouse heteroplasmic lineage produced by embryonic karyoplast transplantation. Genetics 145:445–451PubMedPubMedCentralGoogle Scholar
  5. 5.
    Laipis PJ (1996) Construction of heteroplasmic mice containing two mitochondrial DNA genotypes by micromanipulation of single-cell embryos. Methods Enzymol 264:345–357CrossRefPubMedGoogle Scholar
  6. 6.
    Pinkert CA, Irwin MH, Johnson LW, Moffatt RJ (1997) Mitochondria transfer into mouse ova by microinjection. Transgenic Res 6:379–383CrossRefPubMedGoogle Scholar
  7. 7.
    Irwin MH, Johnson LW, Pinkert CA (1999) Isolation and microinjection of somatic cell-derived mitochondria and germline heteroplasmy in transmitochondrial mice. Transgenic Res 8:119–123CrossRefPubMedGoogle Scholar
  8. 8.
    Inoue K, Nakada K, Ogura A, Isobe K, Yi G, Nonaka I, Hayashi JI (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26:176–181CrossRefPubMedGoogle Scholar
  9. 9.
    Blanc H, Adams CW, Wallace DC (1981) Different nucleotide changes in the large rRNA gene of the mitochondrial DNA confer chloramphenicol resistance on two human cell lines. Nucleic Acids Res 9:5785–5795CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Marchington DR, Barlow D, Poulton J (1999) Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: developing the first mouse model of mitochondrial DNA disease. Nat Med 5:957–960CrossRefPubMedGoogle Scholar
  11. 11.
    Levy SE, Waymire KG, Kim YL, MacGregor GR, Wallace DC (1999) Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse. Transgenic Res 8:137–145CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sligh JE, Levy SE, Waymire KG, Allard P, Dillehay DL, Nusinowitz S, Heckenlively JR, MacGregor GR, Wallace DC (2000) Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A 97:14461–14466CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shimizu A, Mito T, Hayashi C, Ogasawara E, Koba R, Negishi I, Takenaga K, Nakada K, Hayashi J (2014) Transmitochondrial mice as models for primary prevention of diseases caused by mutation in the tRNA(Lys) gene. Proc Natl Acad Sci U S A 111:3104–3109CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hashizume O, Shimizu A, Yokota M, Sugiyama A, Nakada K, Miyoshi H, Itami M, Ohira M, Nagase H, Takenaga K, Hayashi J (2012) Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc Natl Acad Sci U S A 109:10528–10533CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yokota M, Shitara H, Hashizume O, Ishikawa K, Nakada K, Ishii R, Taya C, Takenaga K, Yonekawa H, Hayashi J (2010) Generation of trans-mitochondrial mito-mice by the introduction of a pathogenic G13997A mtDNA from highly metastatic lung carcinoma cells. FEBS Lett 584:3943–3948CrossRefPubMedGoogle Scholar
  16. 16.
    Lin CS, Sharpley MS, Fan W, Waymire KG, Sadun AA, Carelli V, Ross-Cisneros FN, Baciu P, Sung E, McManus MJ, Pan BX, Gil DW, Macgregor GR, Wallace DC (2012) Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc Natl Acad Sci U S A 109:20065–20070CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kasahara A, Ishikawa K, Yamaoka M, Ito M, Watanabe N, Akimoto M, Sato A, Nakada K, Endo H, Suda Y, Aizawa S, Hayashi J (2006) Generation of trans-mitochondrial mice carrying homoplasmic mtDNAs with a missense mutation in a structural gene using ES cells. Hum Mol Genet 15:871–881CrossRefPubMedGoogle Scholar
  18. 18.
    Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, Vannan MA, Narula J, Macgregor GR, Wallace DC (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–962CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Acin-Perez R, Bayona-Bafaluy MP, Bueno M, Machicado C, Fernandez-Silva P, Perez-Martos A, Montoya J, Lopez-Perez MJ, Sancho J, Enriquez JA (2003) An intragenic suppressor in the cytochrome c oxidase I gene of mouse mitochondrial DNA. Hum Mol Genet 12:329–339CrossRefPubMedGoogle Scholar
  20. 20.
    Weiss H, Wester-Rosenloef L, Koch C, Koch F, Baltrusch S, Tiedge M, Ibrahim S (2012) The mitochondrial Atp8 mutation induces mitochondrial ROS generation, secretory dysfunction, and beta-cell mass adaptation in conplastic B6-mtFVB mice. Endocrinology 153:4666–4676CrossRefPubMedGoogle Scholar
  21. 21.
    McKenzie M, Chiotis M, Pinkert CA, Trounce IA (2003) Functional respiratory chain analyses in murid xenomitochondrial cybrids expose coevolutionary constraints of cytochrome b and nuclear subunits of complex III. Mol Biol Evol 20:1117–1124CrossRefPubMedGoogle Scholar
  22. 22.
    McKenzie M, Trounce I (2000) Expression of Rattus norvegicus mtDNA in Mus musculus cells results in multiple respiratory chain defects. J Biol Chem 275:31514–31519CrossRefPubMedGoogle Scholar
  23. 23.
    Kelly RD, Rodda AE, Dickinson A, Mahmud A, Nefzger CM, Lee W, Forsythe JS, Polo JM, Trounce IA, McKenzie M, Nisbet DR, St John JC (2013) Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells. Stem Cells 31:703–716CrossRefPubMedGoogle Scholar
  24. 24.
    McKenzie M, Trounce IA, Cassar CA, Pinkert CA (2004) Production of homoplasmic xenomitochondrial mice. Proc Natl Acad Sci U S A 101:1685–1690CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ian A. Trounce
    • 1
  • Jessica Ackerley
    • 2
  • Matthew McKenzie
    • 3
    Email author
  1. 1.Centre for Eye Research Australia, Royal Victorian Eye and Ear HospitalUniversity of MelbourneEast MelbourneAustralia
  2. 2.Centre for Genetic DiseasesHudson Institute of Medical ResearchClaytonAustralia
  3. 3.Centre for Genetic DiseasesHudson Institute of Medical ResearchClayton, MelbourneAustralia

Personalised recommendations