Advertisement

Engineered mtZFNs for Manipulation of Human Mitochondrial DNA Heteroplasmy

  • Payam A. GammageEmail author
  • Lindsey Van Haute
  • Michal MinczukEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1351)

Abstract

Enrichment of desired mitochondrial DNA (mtDNA) haplotypes, in both experimental systems and the clinic, is an end sought by many. Through use of a designer nuclease platform optimized for delivery to mitochondria—the mitochondrially targeted zinc finger-nuclease (mtZFN)—it is possible to discriminate between mtDNA haplotypes with specificity to the order of a single nucleotide substitution. Site-specific cleavage of DNA produces a shift in the heteroplasmic ratio in favor of the untargeted haplotype. Here, we describe protocols for assembly of paired, conventional tail–tail mtZFN constructs and experimental approaches to assess mtZFN activity in mammalian cell cultures.

Key words

Genetic engineering Zinc finger Zinc finger nuclease Mitochondrial disease Heteroplasmy Gene therapy 

References

  1. 1.
    Parsons TJ, Muniec DS, Sullivan K, Woodyatt N, Alliston-Greiner R, Wilson MR, Berry DL, Holland KA, Weedn VW, Gill P, Holland MM (1997) A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet 15:363–368CrossRefPubMedGoogle Scholar
  2. 2.
    Schapira AH (2006) Mitochondrial disease. Lancet 368:70–82CrossRefPubMedGoogle Scholar
  3. 3.
    Man PY, Turnbull DM, Chinnery PF (2002) Leber hereditary optic neuropathy. J Med Genet 39:162–169CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tanaka M, Borgeld HJ, Zhang J, Muramatsu S, Gong JS, Yoneda M, Maruyama W, Naoi M, Ibi T, Sahashi K, Shamoto M, Fuku N, Kurata M, Yamada Y, Nishizawa K, Akao Y, Ohishi N, Miyabayashi S, Umemoto H, Muramatsu T, Furukawa K, Kikuchi A, Nakano I, Ozawa K, Yagi K (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9:534–541PubMedGoogle Scholar
  5. 5.
    Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19:1111–1113CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 6:458–466CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kim YG, Chandrasegaran S (1994) Chimeric restriction endonuclease. Proc Natl Acad Sci U S A 91:883–887CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci U S A 103:19689–19694CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36:3926–3938CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Minczuk M, Kolasinska-Zwierz P, Murphy MP, Papworth MA (2010) Construction and testing of engineered zinc-finger proteins for sequence-specific modification of mtDNA. Nat Protoc 5:342–356CrossRefPubMedGoogle Scholar
  14. 14.
    Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79CrossRefPubMedGoogle Scholar
  15. 15.
    Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785CrossRefPubMedGoogle Scholar
  16. 16.
    Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793CrossRefPubMedGoogle Scholar
  17. 17.
    Carroll D, Morton JJ, Beumer KJ, Segal DJ (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 1:1329–1341CrossRefPubMedGoogle Scholar
  18. 18.
    Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kim S, Lee MJ, Kim H, Kang M, Kim JS (2011) Preassembled zinc-finger arrays for rapid construction of ZFNs. Nat Methods 8:7CrossRefPubMedGoogle Scholar
  20. 20.
    Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    King MP, Attadi G (1996) Mitochondria-mediated transformation of human rho(0) cells. Methods Enzymol 264:313–334CrossRefPubMedGoogle Scholar
  22. 22.
    Manfredi G, Gupta N, Vazquez-Memije ME, Sadlock JE, Spinazzola A, De Vivo DC, Schon EA (1999) Oligomycin induces a decrease in the cellular content of a pathogenic mutation in the human mitochondrial ATPase 6 gene. J Biol Chem 274:9386–9391CrossRefPubMedGoogle Scholar
  23. 23.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  24. 24.
    Minczuk M (2010) Engineered zinc finger proteins for manipulation of the human mitochondrial genome. Methods Mol Biol 649:257–270CrossRefPubMedGoogle Scholar
  25. 25.
    Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT (2005) Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci U S A 102:14392–14397CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.MRC Mitochondrial Biology UnitCambridgeUK

Personalised recommendations