Skip to main content

High-Throughput Peptide Screening on a Bimodal Imprinting Chip Through MS-SPRi Integration

  • Protocol
Peptide Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1352))

Abstract

Screening of high affinity and high specificity peptide probes towards various targets is important in the biomedical field while traditional peptide screening procedure is manual and tedious. Herein, a bimodal imprinting microarray system to embrace the whole peptide screening process is presented. Surface Plasmon Resonance imaging (SPRi) and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) are combined for both quantitative and qualitative identification of the peptide. The method provides a solution for high efficiency peptide screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamieh S, Saggiomo V, Nowak P et al (2013) A “Dial-A-Receptor” dynamic combinatorial library. Angew Chem Int Ed 52:12368–12372

    Article  CAS  Google Scholar 

  2. Tinberg CE, Khare SD, Dou J et al (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jung E, Kim S, Kim Y et al (2011) A colorimetric high-throughput screening method for palladium-catalyzed coupling reactions of aryl iodides using a gold nanoparticle-based iodide-selective probe. Angew Chem Int Ed 50:4386–4389

    Article  CAS  Google Scholar 

  4. Oeljeklaus J, Kaschani F, Kaiser M (2013) Streamlining chemical probe discovery: libraries of “fully functionalized” small molecules for phenotypic screening. Angew Chem Int Ed 52:1368–1370

    Article  CAS  Google Scholar 

  5. Canon F, Milosavljevic AR, Van Der Rest G et al (2013) Photodissociation and dissociative photoionization mass spectrometry of proteins and noncovalent protein-ligand complexes. Angew Chem Int Ed 52:8377–8381

    Article  CAS  Google Scholar 

  6. Granier S, Manglik A, Kruse AC et al (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485:400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Opitz CA, Litzenburger UM, Sahm F et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203

    Article  CAS  PubMed  Google Scholar 

  8. Israel MA, Yuan SH, Bardy C et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482:216–220

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones SA, Shim S-H, He J et al (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xie J, Liu G, Eden HS et al (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aina OH, Liu R, Sutcliffe JL et al (2007) From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 4:631–651

    Article  CAS  PubMed  Google Scholar 

  12. Tan W-H, Takeuchi S (2007) A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A 104:1146–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim Y-G, Shin D-S, Kim E-M et al (2007) High-throughput identification of substrate specificity for protein kinase by using an improved one-bead-one-compound library approach. Angew Chem Int Ed 46:5408–5411

    Article  CAS  Google Scholar 

  14. Astle JM, Simpson LS, Huang Y et al (2010) Seamless bead to microarray screening: rapid identification of the highest affinity protein ligands from large combinatorial libraries. Chem Biol 17:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cho C-F, Amadei GA, Breadner D et al (2012) Discovery of novel integrin ligands from combinatorial libraries using a multiplex “beads on a bead” approach. Nano Lett 12:5957–5965

    Article  CAS  PubMed  Google Scholar 

  16. Kim J-H, Kang H, Kim S et al (2011) Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles. Chem Commun 47:2306–2308

    Article  CAS  Google Scholar 

  17. Reddy MM, Wilson R, Wilson J et al (2011) Identification of candidate IgG biomarkers for Alzheimer’s disease via combinatorial library screening. Cell 144:132–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang C-J, Tan CYJ, Ge J et al (2013) Preparation of small-molecule microarrays by trans-cyclooctene tetrazine ligation and their application in the high-throughput screening of protein-protein interaction inhibitors of bromodomains. Angew Chem Int Ed 52:14060–14064

    Article  CAS  Google Scholar 

  19. Lausted C, Hu Z, Hood L (2011) Label-free detection with surface plasmon resonance imaging. Methods Mol Biol 723:321–333

    Google Scholar 

  20. Bochet CG (2002) Photolabile protecting groups and linkers. J Chem Soc Perkin Trans 1:125–142

    Google Scholar 

  21. Lausted C, Hu Z, Hood L (2008) Quantitative serum proteomics from surface plasmon resonance imaging. Mol Cell Proteomics 7:2464–2474

    Article  CAS  PubMed  Google Scholar 

  22. Remy-Martin F, El Osta M, Lucchi G et al (2012) Automated cancer marker characterization in human plasma using surface plasmon resonance in array combined with mass spectrometry (SUPRA-MS). In: Luxton R (ed) 2nd International conference on bio-sensing technology. pp 11–19

    Google Scholar 

  23. Remy-Martin F, El Osta M, Lucchi G et al (2012) Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma. Anal Bioanal Chem 404:423–432

    Article  CAS  PubMed  Google Scholar 

  24. Bellon S, Buchmann W, Gonnet F et al (2009) Hyphenation of surface plasmon resonance imaging to matrix-assisted laser desorption ionization mass spectrometry by on-chip mass spectrometry and tandem mass spectrometry analysis. Anal Chem 81:7695–7702

    Article  CAS  PubMed  Google Scholar 

  25. Amadei GA, Cho C, Lewis JD et al (2009) A fast, reproducible and low-cost method for sequence deconvolution of ‘on beads’ peptides via ‘on target’ Maldi-TOF/TOF mass spectrometry. J Mass Spectrom 45:241–251

    Article  Google Scholar 

  26. Schirwitz C, Loeffler FF, Felgenhauer T et al (2013) Purification of high-complexity peptide microarrays by spatially resolved array transfer to gold-coated membranes. Adv Mater 25:1598–1602

    Article  CAS  PubMed  Google Scholar 

  27. Beyer M, Nesterov A, Block I et al (2007) Combinatorial synthesis of peptide arrays onto a microchip. Science 318(5858):1888

    Article  CAS  PubMed  Google Scholar 

  28. May M (2013) The clinical aspirations of microarrays. Science 15(6121):858–860

    Article  Google Scholar 

  29. Zheng H, Wang W, Li X et al (2013) An automated Teflon microfluidic peptide synthesizer. Lab Chip 13:3347–3350

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Huang Y, Jin Y et al (2013) A tetra-layer microfluidic system for peptide affinity screening through integrated sample injection. Analyst 138:2890–2896

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Huang Y, Liu J et al (2011) Integrated SPPS on continuous-flow radial microfluidic chip. Lab Chip 11:929–935

    Article  CAS  PubMed  Google Scholar 

  32. Cheung CL, Nikolic RJ, Reinhardt CE et al (2006) Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17:1339–1343

    Article  CAS  Google Scholar 

  33. Kofoed J, Reymond J-L (2007) Identification of protease substrates by combinatorial profiling on TentaGel beads. Chem Commun 4453–4455

    Google Scholar 

  34. Fields GB, Noble RL (1990) Solid-phase peptide-synthesis utilizing 9-fluorenylmethoxycarbonyl amino-acids. Int J Pept Protein Res 35:161–214

    Article  CAS  PubMed  Google Scholar 

  35. Merrifield RB (1963) Solid phase peptide synthesis.1. Synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  36. Wang W, Li M, Wei Z et al (2014) Bimodal imprint chips for peptide screening: integration of high-throughput sequencing by MS and affinity analyses by surface plasmon resonance imaging. Anal Chem 86(8):3703–3707. doi:10.1021/ac500465e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the National Natural Science Foundation of China (21305023, 31270875), Beijing Municipal Natural Science Foundation (2144058), Project of Chinese Academy of Science (YZ201217), State Key Development Program for Basic Research of China grant (2011CB915502), and International Cooperation Project (0102010DFB33880).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaojun Fang or Zhiyuan Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, W., Fang, Q., Hu, Z. (2016). High-Throughput Peptide Screening on a Bimodal Imprinting Chip Through MS-SPRi Integration. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology, vol 1352. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3037-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3037-1_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3036-4

  • Online ISBN: 978-1-4939-3037-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics