Skip to main content

A Cell Microarray Format: A Peptide Release System Using a Photo-Cleavable Linker for Cell Toxicity and Cell Uptake Analysis

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1352))

Abstract

There has been increasing interest in the potential use of microarray technologies to perform systematic and high-throughput cell-based assays. We are currently focused on developing more practical array formats and detection methods that will enable researchers to conduct more detailed analyses in cell microarray studies. In this chapter, we describe the construction of a novel peptide-array format system for analyzing cellular toxicity and cellular uptake. In this system, a peptide is immobilized at the bottom of a conventional 96-well plate using a photo-cleavable linker. The peptide can then be released from the bottom by irradiating the desired wells with UV light, thus allowing the cytotoxicity or cellular uptake of the peptide to be monitored. This system will facilitate the realization of high-throughput cell arrays for cellomics analyses and cell-based phenotypic drug screens.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432:846–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kandpal R, Saviola B, Felton J (2009) The era of ‘omics unlimited. Biotechniques 46:351–355

    Article  CAS  PubMed  Google Scholar 

  3. Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JM (2009) High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27:342–349

    Article  CAS  PubMed  Google Scholar 

  4. Usui K, Takahashi M, Nokihara K, Mihara H (2004) Peptide arrays with designed alpha-helical structures for characterization of proteins from FRET fingerprint patterns. Mol Divers 8:209–218

    Article  CAS  PubMed  Google Scholar 

  5. Usui K, Ojima T, Takahashi M, Nokihara K, Mihara H (2004) Peptide arrays with designed secondary structures for protein characterization using fluorescent fingerprint patterns. Biopolymers 76:129–139

    Article  CAS  PubMed  Google Scholar 

  6. Usui K, Tomizaki K-Y, Ohyama T, Nokihara K, Mihara H (2006) A novel peptide microarray for protein detection and analysis utilizing a dry peptide array system. Mol Biosyst 2:113–121

    Article  CAS  PubMed  Google Scholar 

  7. Usui K, Tomizaki K-Y, Mihara H (2006) Protein-fingerprint data mining of a designed alpha-helical peptide array. Mol Biosyst 2:417–420

    Article  CAS  PubMed  Google Scholar 

  8. Usui K, Tomizaki K-Y, Mihara H (2007) Screening of alpha-helical peptide ligands controlling a calcineurin-phosphatase activity. Bioorg Med Chem Lett 17:167–171

    Article  CAS  PubMed  Google Scholar 

  9. Usui K, Tomizaki K-Y, Mihara H (2009) A designed peptide chip: protein fingerprinting technology with a dry peptide array and statistical data mining. Methods Mol Biol 570:273–284

    Article  CAS  PubMed  Google Scholar 

  10. Kodadek T (2002) Development of protein-detecting microarrays and related devices. Trends Biochem Sci 27:295–300

    Article  CAS  PubMed  Google Scholar 

  11. Tomizaki K-Y, Usui K, Mihara H (2005) Protein-detecting microarrays: current accomplishments and requirements. Chembiochem 6:782–799

    Article  CAS  PubMed  Google Scholar 

  12. Uttamchandani M, Yao SQ (2008) Peptide microarrays: next generation biochips for detection, diagnostics and high-throughput screening. Curr Pharm Des 14:2428–2438

    Article  CAS  PubMed  Google Scholar 

  13. Tomizaki K-Y, Usui K, Mihara H (2009) Proteins: array-based techniques. In: Begley TP (ed) Wiley encyclopedia of chemical biology, John Wiley and Sons, Inc., Hoboken, New Jersey, USA pp 144–158

    Google Scholar 

  14. Tomizaki KY, Usui K, Mihara H (2010) Protein-protein interactions and selection: array-based techniques for screening disease-associated biomarkers in predictive/early diagnosis. FEBS J 277:1996–2005

    Article  CAS  PubMed  Google Scholar 

  15. Usui K, Kakiyama T, Tomizaki K-Y, Mie M, Kobatake E, Mihara H (2011) Cell fingerprint patterns using designed α-helical peptides to screen for cell-specific toxicity. Bioorg Med Chem Lett 21:6281–6284

    Article  CAS  PubMed  Google Scholar 

  16. Usui K, Kikuchi T, Mie M, Kobatake E, Mihara H (2013) Systematic screening of the cellular uptake of designed alpha-helix peptides. Bioorg Med Chem 21:2560–2567

    Article  CAS  PubMed  Google Scholar 

  17. Kakiyama T, Usui K, Tomizaki K-Y, Mie M, Kobatake E, Mihara H (2013) A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer J 45:535–539

    Article  CAS  Google Scholar 

  18. Usui K, Kikuchi T, Tomizaki K-Y, Kakiyama T, Mihara H (2013) Novel array format for monitoring cellular uptake using a photo-cleavable linker for peptide release. Chem Commun 49:6394–6396

    Article  CAS  Google Scholar 

  19. Hoff A, André T, Fischer R, Voss S, Hulko M, Marquardt U, Wiesmüller K-H, Brock R (2004) Chemolabile cellular microarrays for screening small molecules and peptides. Mol Divers 8:311–320

    Article  CAS  PubMed  Google Scholar 

  20. Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, New York

    Google Scholar 

  21. Holmes CP, Jones DG (1995) Reagents for combinatorial organic synthesis: development of a new o-nitrobenzyl photolabile linker for solid phase synthesis. J Org Chem 60:2318–2319

    Article  CAS  Google Scholar 

  22. Whitehouse DL, Savinov SN, Austin DJ (1997) An improved synthesis and selective coupling of a hydroxy based photolabile linker for solid phase organic synthesis. Tetrahedron Lett 38:7851–7852

    Article  CAS  Google Scholar 

  23. Rinnová M, Nováková M, Kasicka V, Jirácek J (2000) Side reactions during photochemical cleavage of an alpha-methyl-6-nitroveratryl-based photolabile linker. J Pept Sci 6:355–365

    Article  PubMed  Google Scholar 

  24. Nakayama K, Tachikawa T, Majima T (2008) Protein recording material: photorecord/erasable protein array using a UV-eliminative linker. Langmuir 24:1625–1628

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Dong Z, Nomura M, Zhong S, Chen N, Bode AM, Dong Z (2001) Signal transduction pathways involved in phosphorylation and activation of p70S6K following exposure to UVA irradiation. J Biol Chem 276:20913–20923

    Article  CAS  PubMed  Google Scholar 

  26. Soughayer JS, Wang Y, Li H, Cheung S-H, Rossi FM, Stanbridge EJ, Sims CE, Allbritton NL (2004) Characterization of TAT-mediated transport of detachable kinase substrates. Biochemistry 43:8528–8540

    Article  CAS  PubMed  Google Scholar 

  27. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi M, Nokihara K, Mihara H (2003) Construction of a protein-detection system using a loop peptide library with a fluorescence label. Chem Biol 10:53–60

    Article  CAS  PubMed  Google Scholar 

  29. Usui K, Ojima T, Tomizaki K-Y, Mihara H (2005) A designed glycopeptide array for characterization of sugar-binding proteins toward a glycopeptide chip technology. NanoBiotechnology 1:191–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. T. Kakiyama and Mr. T. Kikuchi (Tokyo Institute of Technology, Yokohama) for valuable discussions and generous support. This study was supported in part by grants from JSPS KAKENHI and NAGASE Science Technology Foundation. K.U. is also grateful to the JSPS KAKENHI Grant Number 26750375 from MEXT and the Grant-in-Aid for Encouragement of Young Scientists from Nakatani Foundation. K.-Y. T. acknowledges the Ryukoku University Science and Technology Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Usui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Usui, K., Tomizaki, Ky., Mihara, H. (2016). A Cell Microarray Format: A Peptide Release System Using a Photo-Cleavable Linker for Cell Toxicity and Cell Uptake Analysis. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology, vol 1352. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3037-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3037-1_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3036-4

  • Online ISBN: 978-1-4939-3037-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics