Skip to main content

Peptide Arrays on Planar Supports

  • Protocol
Peptide Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1352))

Abstract

On a past volume of this monograph we have reviewed general aspects of the varied technologies available to generate peptide arrays. Hallmarks in the development of the technology and a main sketch of preparative steps and applications in binding assays were used to walk the reader through details of peptide arrays. In this occasion, we resume from that work and bring in some considerations on quantitative evaluation of measurements as well as on selected reports applying the technology.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-1-4939-3037-1_22

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-3037-1_22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bier FF, von Nickisch-Rosenegk M, Ehrentreich-Forster E, Reiss E, Henkel J, Strehlow R, Andresen D (2008) DNA microarrays. Adv Biochem Eng Biotechnol 109:433–453

    CAS  PubMed  Google Scholar 

  2. Southern EM (2001) DNA microarrays. History and overview. Methods Mol Biol 170:1–15

    CAS  PubMed  Google Scholar 

  3. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14:457–460

    Article  CAS  PubMed  Google Scholar 

  4. Szathmary E, Smith JM (1995) The major evolutionary transitions. Nature 374:227–232

    Article  CAS  PubMed  Google Scholar 

  5. Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537

    Article  CAS  PubMed  Google Scholar 

  6. Chen G, Gharib TG, Huang CC, Thomas DG, Shedden KA, Taylor JM, Kardia SL, Misek DE, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, Beer DG (2002) Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors. Clin Cancer Res 8:2298–2305

    CAS  PubMed  Google Scholar 

  7. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y) 14:61–65

    Article  CAS  Google Scholar 

  9. Aebersold R (2003) Constellations in a cellular universe. Nature 422:115–116

    Article  CAS  PubMed  Google Scholar 

  10. Phizicky E, Bastiaens PIH, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422:208–215

    Article  CAS  PubMed  Google Scholar 

  11. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763

    CAS  PubMed  Google Scholar 

  12. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T et al (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    Article  CAS  PubMed  Google Scholar 

  13. Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, Klemic KG, Smith D, Gerstein M, Reed MA, Snyder M (2000) Analysis of yeast protein kinases using protein chips. Nat Genet 26:283–289

    Article  CAS  PubMed  Google Scholar 

  14. Frank R, Güler S, Krause S, Lindenmaier W (1991) Facile and rapid spot-synthesis of large numbers of peptides on membrane sheets. In: Giralt E, Andreu D (eds) Peptides. ESCOM Science Publishers B. V, Leiden, pp 151–152

    Google Scholar 

  15. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773

    Article  CAS  PubMed  Google Scholar 

  16. Gutte B, Merrifield RB (1969) The total synthesis of an enzyme with ribonuclease A activity. J Am Chem Soc 91:501–502

    Article  CAS  PubMed  Google Scholar 

  17. Merrifield RB (1965) Automated synthesis of peptides. Science 150:178–185

    Article  CAS  PubMed  Google Scholar 

  18. Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  CAS  PubMed  Google Scholar 

  19. Geysen HM, Meloen RH, Barteling SJ (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A 81:3998–4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frank R (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232

    Article  CAS  Google Scholar 

  21. Frank R (2002) The SPOT-synthesis technique: synthetic peptide arrays on membrane supports—principles and applications. J Immunol Methods 267:13–26

    Article  CAS  PubMed  Google Scholar 

  22. Goede A, Jaeger IS, Preissner R (2005) SUPERFICIAL—surface mapping of proteins via structure-based peptide library design. BMC Bioinformatics 6:223

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ekins RP (1998) Ligand assays: from electrophoresis to miniaturized microarrays. Clin Chem 44:2015–2030

    CAS  PubMed  Google Scholar 

  24. Reimer U, Reineke U, Schneider-Mergener J (2002) Peptide arrays: from macro to micro. Curr Opin Biotechnol 13:315–320

    Article  CAS  PubMed  Google Scholar 

  25. Schutkowski M, Reimer U, Panse S, Dong L, Lizcano JM, Alessi DR, Schneider-Mergener J (2004) High-content peptide microarrays for deciphering kinase specificity and biology. Angew Chem Int Ed Engl 116:2725–2728

    Article  Google Scholar 

  26. El Khoury G, Laurenceau E, Dugas V, Chevolot Y, Merieux Y, Duclos MC, Souteyrand E, Rigal D, Wallach J, Cloarec JP (2007) Acid deprotection of covalently immobilized peptide probes on glass slides for peptide microarrays. Conf Proc IEEE Eng Med Biol Soc 2007:2242–2246

    PubMed  Google Scholar 

  27. Gao X, Pellois JP, Na Y, Kim Y, Gulari E, Zhou X (2004) High density peptide microarrays. In situ synthesis and applications. Mol Divers 8:177–187

    Article  CAS  PubMed  Google Scholar 

  28. Pellois JP, Wang W, Gao X (2000) Peptide synthesis based on t-Boc chemistry and solution photogenerated acids. J Comb Chem 2:355–360

    Article  CAS  PubMed  Google Scholar 

  29. Pellois JP, Zhou X, Srivannavit O, Zhou T, Gulari E, Gao X (2002) Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 20:922–926

    Article  CAS  PubMed  Google Scholar 

  30. Eichler J, Beyermann M, Bienert M (1989) Application of cellulose paper as support in simultaneous solid phase peptide synthesis. Collect Czechoslov Chem Commun 54:1746–1752

    Article  CAS  Google Scholar 

  31. Frank R, Döring R (1988) Simultaneous multiple peptide synthesis under continuous flow conditions on cellulose paper disks as segmental solid supports. Tetrahedron 44:6031–6040

    Article  CAS  Google Scholar 

  32. Eichler J, Bienert M, Stierandova A, Lebl M (1991) Evaluation of cotton as a carrier for solid-phase peptide synthesis. Pept Res 4:296–307

    CAS  PubMed  Google Scholar 

  33. Schmidt M, Eichler J (1993) Multiple peptide synthesis using cellulose-based carriers: synthesis of substance P—diastereoisomers and their histamine-releasing activity. Bioorg Med Chem Lett 3:441–446

    Article  CAS  Google Scholar 

  34. Daniels SB, Bernatowicz MS, Coull JM, Köster H (1989) Membranes as solid supports for peptide synthesis. Tetrahedron Lett 30:4345–4348

    Article  CAS  Google Scholar 

  35. Wang Z, Laursen RA (1992) Multiple peptide synthesis on polypropylene membranes for rapid screening of bioactive peptides. Pept Res 5:275–280

    CAS  PubMed  Google Scholar 

  36. Wenschuh H, Volkmer-Engert R, Schmidt M, Schulz M, Schneider-Mergener J, Reineke U (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 55:188–206

    Article  CAS  PubMed  Google Scholar 

  37. Falsey JR, Renil M, Park S, Li S, Lam KS (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug Chem 12:346–353

    Article  CAS  PubMed  Google Scholar 

  38. Houseman BT, Huh JH, Kron SJ, Mrksich M (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol 20:270–274

    Article  CAS  PubMed  Google Scholar 

  39. Jonsson U, Fagerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Lofas S, Persson B, Roos H, Ronnberg I et al (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11:620–627

    CAS  PubMed  Google Scholar 

  40. Malmqvist M (1993) Biospecific interaction analysis using biosensor technology. Nature 361:186–187

    Article  CAS  PubMed  Google Scholar 

  41. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2:3247–3256

    Article  CAS  PubMed  Google Scholar 

  42. Hilpert K, Winkler DF, Hancock RE (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc 2:1333–1349

    Article  CAS  PubMed  Google Scholar 

  43. Rüdiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J 20:1042–1050

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reineke U, Ivascu C, Schlief M, Landgraf C, Gericke S, Zahn G, Herzel H, Volkmer-Engert R, Schneider-Mergener J (2002) Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. J Immunol Methods 267:37–51

    Article  CAS  PubMed  Google Scholar 

  45. Nady N, Min J, Kareta MS, Chédin F, Arrowsmith CH (2008) A SPOT on the chromatin landscape? Histone peptide arrays as a tool for epigenetic research. Trends Biochem Sci 33:305–313

    Article  CAS  PubMed  Google Scholar 

  46. Nady N, Krichevsky L, Zhong N, Duan S, Tempel W, Amaya MF, Ravichandran M, Arrowsmith CH (2012) Histone recognition by human malignant brain tumor domains. J Mol Biol 423:702–718

    Article  CAS  PubMed  Google Scholar 

  47. Ulbricht A, Eppler FJ, Tapia VE, van der Ven PFM, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P et al (2013) Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol 23:430–435

    Article  CAS  PubMed  Google Scholar 

  48. Panse S, Dong L, Burian A, Carus R, Schutkowski M, Reimer U, Schneider-Mergener J (2004) Profiling of generic anti-phosphopeptide antibodies and kinases with peptide microarrays using radioactive and fluorescence-based assays. Mol Divers 8:291–299

    Article  CAS  PubMed  Google Scholar 

  49. Rychlewski L, Kschischo M, Dong L, Schutkowski M, Reimer U (2004) Target specificity analysis of the Abl kinase using peptide microarray data. J Mol Biol 336:307–311

    Article  CAS  PubMed  Google Scholar 

  50. Shigaki S, Yamaji T, Han X, Yamanouchi G, Sonoda T, Okitsu O, Mori T, Niidome T, Katayama Y (2007) A peptide microarray for the detection of protein kinase activity in cell lysate. Anal Sci 23:271–275

    Article  CAS  PubMed  Google Scholar 

  51. Shreffler WG, Lencer DA, Bardina L, Sampson HA (2005) IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2. J Allergy Clin Immunol 116:893–899

    Article  CAS  PubMed  Google Scholar 

  52. Cerecedo I, Zamora J, Shreffler WG, Lin J, Bardina L, Dieguez MC, Wang J, Muriel A, de la Hoz B, Sampson HA (2008) Mapping of the IgE and IgG4 sequential epitopes of milk allergens with a peptide microarray-based immunoassay. J Allergy Clin Immunol 122:589–594

    Article  CAS  PubMed  Google Scholar 

  53. Lin J, Bardina L, Shreffler WG, Andreae DA, Ge Y, Wang J, Bruni FM, Fu Z, Han Y, Sampson HA (2009) Development of a novel peptide microarray for large scale epitope mapping of food allergens. J Allergy Clin Immunol 124:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Vos K, Girones J, Popelka S, Schacht E, Baets R, Bienstman P (2009) SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications. Biosens Bioelectron 24:2528–2533

    Article  PubMed  Google Scholar 

  55. MacBeath G, Koehler AN, Schreiber SL (1999) Printing small molecules as microarrays and detecting protein − ligand interactions en masse. J Am Chem Soc 121:7967–7968

    Article  CAS  Google Scholar 

  56. Han A, Sonoda T, Kang JH, Murata M, NIiidome T, Katayam Y (2006) Development of a fluorescence peptide chip for the detection of caspase activity. Comb Chem High Throughput Screen 9:21–25

    Article  CAS  PubMed  Google Scholar 

  57. Inamori K, Kyo M, Nishiya Y, Inoue Y, Sonoda T, Kinoshita E, Koike T, Katayama Y (2005) Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule. Anal Chem 77:3979–3985

    Article  CAS  PubMed  Google Scholar 

  58. Inamori K, Kyo M, Matsukawa K, Inoue Y, Sonoda T, Tatematsu K, Tanizawa K, Mori T, Katayama Y (2008) Optimal surface chemistry for peptide immobilization in on-chip phosphorylation analysis. Anal Chem 80:643–650

    Article  CAS  PubMed  Google Scholar 

  59. Mori T, Inamori K, Inoue Y, Han X, Yamanouchi G, Niidome T, Katayama Y (2008) Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging. Anal Biochem 375:223–231

    Article  CAS  PubMed  Google Scholar 

  60. Lesaicherre ML, Uttamchandani M, Chen GY, Yao SQ (2002) Developing site-specific immobilization strategies of peptides in a microarray. Bioorg Med Chem Lett 12:2079–2083

    Article  CAS  PubMed  Google Scholar 

  61. Uttamchandani M, Chen GY, Lesaicherre ML, Yao SQ (2004) Site-specific peptide immobilization strategies for the rapid detection of kinase activity on microarrays. Methods Mol Biol 264:191–204

    CAS  PubMed  Google Scholar 

  62. Andresen H, Grotzinger C, Zarse K, Kreuzer OJ, Ehrentreich-Forster E, Bier FF (2006) Functional peptide microarrays for specific and sensitive antibody diagnostics. Proteomics 6:1376–1384

    Article  CAS  PubMed  Google Scholar 

  63. Andresen H, Zarse K, Grotzinger C, Hollidt JM, Ehrentreich-Forster E, Bier FF, Kreuzer OJ (2006) Development of peptide microarrays for epitope mapping of antibodies against the human TSH receptor. J Immunol Methods 315:11–18

    Article  CAS  PubMed  Google Scholar 

  64. Lesaicherre M-L, Lue RYP, Chen GYJ, Zhu Q, Yao SQ (2002) Intein-mediated biotinylation of proteins and its application in a protein microarray. J Am Chem Soc 124:8768–8769

    Article  CAS  PubMed  Google Scholar 

  65. Camarero JA, Kwon Y, Coleman MA (2004) Chemoselective attachment of biologically active proteins to surfaces by expressed protein ligation and its application for “protein chip” fabrication. J Am Chem Soc 126:14730–14731

    Article  CAS  PubMed  Google Scholar 

  66. Kwon Y, Coleman MA, Camarero JA (2006) Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew Chem Int Ed 45:1726–1729

    Article  CAS  Google Scholar 

  67. Sun L, Rush J, Ghosh I, Maunus JR, Xu MQ (2004) Producing peptide arrays for epitope mapping by intein-mediated protein ligation. Biotechniques 37:430

    CAS  PubMed  Google Scholar 

  68. Xu M-Q, Ghosh I, Kochinyan S, Sun L (2007) Intein-mediated peptide arrays for epitope mapping and kinase/phosphatase assays. In: Rampal JB (ed) Microarrays. Humana Press, Totowa, NJ, pp 313–338

    Google Scholar 

  69. Shah NH, Vila-Perelló M, Muir TW (2011) Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl 50:6511–6515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mootz HD (2009) Split inteins as versatile tools for protein semisynthesis. Chembiochem 10:2579–2589

    Article  CAS  PubMed  Google Scholar 

  71. Shah NH, Muir TW (2013) Inteins: nature’s gift to protein chemists. Chem Sci 5:446–461

    Article  PubMed Central  Google Scholar 

  72. Dikmans A, Beutling U, Schmeisser E, Thiele S, Frank R (2006) SC2: a novel process for manufacturing multipurpose high-density chemical microarrays. QSAR Comb Sci 25:1069–1080

    Article  CAS  Google Scholar 

  73. Zubtsov DA, Savvateeva EN, Rubina AY, Pan’kov SV, Konovalova EV, Moiseeva OV, Chechetkin VR, Zasedatelev AS (2007) Comparison of surface and hydrogel-based protein microchips. Anal Biochem 368:205–213

    Article  CAS  PubMed  Google Scholar 

  74. Mori T, Yamanouchi G, Han X, Inoue Y, Shigaki S, Yamaji T, Sonoda T, Yasui K, Hayashi H, Niidome T, Katayama Y (2009) Signal-to-noise ratio improvement of peptide microarrays by using hyperbranched-polymer materials. J Appl Phys 105:102020

    Article  Google Scholar 

  75. Angenendt P, Glokler J, Murphy D, Lehrach H, Cahill DJ (2002) Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem 309:253–260

    Article  CAS  PubMed  Google Scholar 

  76. Seurynck-Servoss SL, Baird CL, Miller KD, Pefaur NB, Gonzalez RM, Apiyo DO, Engelmann HE, Srivastava S, Kagan J, Rodland KD, Zangar RC (2008) Immobilization strategies for single-chain antibody microarrays. Proteomics 8:2199–2210

    Article  CAS  PubMed  Google Scholar 

  77. Angenendt P, Glokler J, Sobek J, Lehrach H, Cahill DJ (2003) Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications. J Chromatogr A 1009:97–104

    Article  CAS  PubMed  Google Scholar 

  78. Seurynck-Servoss SL, Baird CL, Rodland KD, Zangar RC (2007) Surface chemistries for antibody microarrays. Front Biosci 12:3956–3964

    Article  CAS  PubMed  Google Scholar 

  79. Sobek J, Aquino C, Schlapbach R (2007) Quality considerations and selection of surface chemistry for glass-based DNA, peptide, antibody, carbohydrate, and small molecule microarrays. Methods Mol Biol 382:17–31

    Article  CAS  PubMed  Google Scholar 

  80. Engelmann BW, Kim Y, Wang M, Peters B, Rock RS, Nash PD (2014) The development and application of a quantitative peptide microarray based approach to protein interaction domain specificity space. Mol Cell Proteomics 13:3647–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pawson T, Nash P (2000) Protein–protein interactions define specificity in signal transduction. Genes Dev 14:1027–1047

    CAS  PubMed  Google Scholar 

  82. Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114:1253–1263

    CAS  PubMed  Google Scholar 

  83. Ladbury JE, Arold S (2000) Searching for specificity in SH domains. Chem Biol 7:R3–R8

    Article  CAS  PubMed  Google Scholar 

  84. Beltrao P, Serrano L (2007) Specificity and evolvability in eukaryotic protein interaction networks. PLoS Comput Biol 3(3):e70

    Article  PubMed Central  Google Scholar 

  85. Bee C, Abdiche YN, Pons J, Rajpal A (2013) Determining the binding affinity of therapeutic monoclonal antibodies towards their native unpurified antigens in human serum. PLoS One 8:e80501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q J Appl Math II 2:164–168

    Google Scholar 

  87. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  88. Press WH (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  89. Tapia V, Bongartz J, Schutkowski M, Bruni N, Weiser A, Ay B, Volkmer R, Or-Guil M (2007) Affinity profiling using the peptide microarray technology: a case study. Anal Biochem 363:108–118

    Article  CAS  PubMed  Google Scholar 

  90. Ekins R, Chu F, Biggart E (1990) Multispot, multianalyte, immunoassay. Ann Biol Clin (Paris) 48:655–666

    CAS  Google Scholar 

  91. Ekins RP (1989) Multi-analyte immunoassay. J Pharm Biomed Anal 7:155–168

    Article  CAS  PubMed  Google Scholar 

  92. Joos TO, Stoll D, Templin MF (2002) Miniaturised multiplexed immunoassays. Curr Opin Chem Biol 6:76–80

    Article  CAS  PubMed  Google Scholar 

  93. Templin MF, Stoll D, Bachmann J, Joos TO (2004) Protein microarrays and multiplexed sandwich immunoassays: what beats the beads? Comb Chem High Throughput Screen 7:223–229

    Article  CAS  PubMed  Google Scholar 

  94. Hartmann M, Toegl A, Kirchner R, Templin MF, Joos TO (2006) Increasing robustness and sensitivity of protein microarrays through microagitation and automation. Anal Chim Acta 564:66–73

    Article  CAS  PubMed  Google Scholar 

  95. Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439:168–174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Victor Tapia is supported by grants from the German Research Association (DFG VO 885/8-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Eduardo Tapia Mancilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mancilla, V.E.T., Volkmer, R. (2016). Peptide Arrays on Planar Supports. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology, vol 1352. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3037-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3037-1_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3036-4

  • Online ISBN: 978-1-4939-3037-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics