Skip to main content

Fetal Sleep and Spontaneous Behavior In Utero: Animal and Clinical Studies

  • Protocol
Prenatal and Postnatal Determinants of Development

Part of the book series: Neuromethods ((NM,volume 109))

Abstract

The term fetal behavior includes fetal sleep states, which in precocial mammalian species (i.e., those born relatively mature at birth) develop in late gestation, along with the fetal physiological processes, such as fetal body movements and breathing activity, cardiovascular function, blood gas, and acid-base status, which are linked to fetal sleep states. Since ~1970, as a result of technological and technical advances, there has been significant advances in our understanding of fetal behavior in man and animals, and also the development of fetal monitoring techniques in human pregnancy that are based on the changes in fetal behavioral variables that are altered in pathophysiological complications of pregnancy. In species such as sheep, guinea pigs, and primates, including the human, fetal sleep states, comprised primarily of quiet sleep and REM sleep, develop in the second half of gestation. Fetal motility in the form of body and breathing movements develop earlier in gestation, but when fetal sleep states develop they become linked to these states. In all species, fetal breathing is episodic occurring about 40 % of the time. In the fetal lamb, fetal breathing activity occurs only in REM sleep, whereas in primates, breathing occurs in both sleep states although the character of the breathing movements changes with sleep state. Fetal body movements occur in both sleep states, but vigorous body movements occur mainly during brief periods of a more aroused state, in which vigorous breathing and fetal swallowing also occur. However this aroused state is unlikely to represent wakefulness. Although they do not fulfil the functions that they will after birth, fetal breathing and body movements are important for the development of the lung and musculoskeletal system, respectively. Uterine activity, in the form of pre-labor contractions, which appear to occur in all species, can also affect fetal behavioral activity, particularly in species, like sheep, where the contractions are quiet long (5 min). There are also circadian rhythms in breathing and body movements, and various other fetal variables, with a higher incidence breathing and motility at night. Evidence from sheep indicates that the fetal circadian rhythms are derived from the maternal melatonin rhythm via maternal to fetal transfer of maternal melatonin. Fetal movements are associated with transient changes in fetal heart rate, usually accelerations, and this response forms the basis of the non-stress test and is an element of the fetal biophysical profile score, which are commonly used diagnostic methods to assess fetal well-being in human pregnancies. The transient accelerations in fetal heart rate increase cardiac output and umbilical blood flow. In contrast to the situation after birth, fetal vascular oxygenation fluctuates consistently with transient decreases due to episodic fetal breathing and body movements and uterine contractions. In sheep, increasing the frequency of these uterine contractions above the normal rate, via pulsatile maternal intravenous oxytocin administration, has maturational effects on neural and cardiovascular functions. Overall the data indicate that in late gestation, the healthy fetus exhibits an organized constellation of cyclic activities, including motility, breathing activity, ingestion, and cardiorespiratory function, all of which are linked to the regular alterations in behavioral states. In all species studied, there is a progressive decrease in fetal motility with advancing gestation and there are also reductions in fetal motility with fetal metabolic compromise. More studies are required in the human and other species to more precisely define the changes in fetal behavioral and related variables with advancing gestation and with deteriorations in fetal metabolic status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meschia G, Cotter J, Makowski E, Barron D (1966) Simultaneous measurement of uterine and umbilical blood flows and oxygen uptakes. Q J Exp Physiol 52:1–18

    Google Scholar 

  2. Clark KE, Mack C, Khoury J (1990) Effects of chronic instrumentation on fetal growth. J Dev Physiol 14:343–347

    CAS  PubMed  Google Scholar 

  3. Bessette NW, Rurak DW (2010) Chronic fetal and maternal instrumentation in pregnant sheep: effect on gestation length and birth weight. Reprod Fertil Dev 22:459–467

    PubMed  Google Scholar 

  4. Dawes GS, Fox HE, Leduc BM, Liggins GC, Richards RT (1972) Respiratory movements and rapid eye movement sleep in the foetal lamb. J Physiol 220:119–143

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Ruckebusch Y, Gaujoux M, Eghbali B (1977) Sleep cycles and kinesis in the foetal lamb. Electroencephalogr Clin Neurophysiol 42: 226–237

    CAS  PubMed  Google Scholar 

  6. Harding R, Sigger JN, Poore ER, Johnson P (1984) Ingestion in fetal sheep and its relation to sleep states and breathing movements. Q J Exp Physiol 69:477–486

    CAS  PubMed  Google Scholar 

  7. Ruckebusch Y (1972) Development of sleep and wakefulness in the foetal lamb. Electroencephalogr Clin Neurophysiol 32:119–128

    CAS  PubMed  Google Scholar 

  8. Rigatto H, Blanco CE, Walker DW (1982) The response to stimulation of hindlimb nerves in fetal sheep, in utero, during the different phases of electrocortical activity. J Dev Physiol 4:175–185

    CAS  PubMed  Google Scholar 

  9. Szeto HH, Hinman DJ (1985) Prenatal development of sleep-wake patterns in sheep. Sleep 8:347–355

    CAS  PubMed  Google Scholar 

  10. Harned HS Jr, Ferreiro J (1973) Initiation of breathing by cold stimulation: effects of change in ambient temperature on respiratory activity of the full-term fetal lamb. J Pediatr 83:663–669

    PubMed  Google Scholar 

  11. Harned HS Jr, Herrington RT, Ferreiro JI (1970) The effects of immersion and temperature on respiration in newborn lambs. Pediatrics 45:598–605

    PubMed  Google Scholar 

  12. Gluckman PD, Gunn TR, Johnston BM (1983) The effect of cooling on breathing and shivering in unanaesthetized fetal lambs in utero. J Physiol 343:495–506

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Rigatto H, Moore M, Cates D (1986) Fetal breathing and behavior measured through a double-wall Plexiglas window in sheep. J Appl Physiol 61:160–164

    CAS  PubMed  Google Scholar 

  14. Mellor DJ, Diesch TJ, Gunn AJ, Bennet L (2005) The importance of ‘awareness’ for understanding fetal pain. Brain Res Brain Res Rev 49:455–471

    PubMed  Google Scholar 

  15. Mellor DJ, Diesch TJ (2007) Birth and hatching: key events in the onset of awareness in the lamb and chick. N Z Vet J 55:51–60

    CAS  PubMed  Google Scholar 

  16. Stark RI, Haiken J, Nordli D, Myers MM (1991) Characterization of electroencephalographic state in fetal baboons. Am J Physiol 261:R496–R500

    CAS  PubMed  Google Scholar 

  17. Grieve PG, Myers MM, Stark RI (1994) Behavioral states in the fetal baboon. Early Hum Dev 39:159–175

    CAS  PubMed  Google Scholar 

  18. Isler JR, Garland M, Stark RI, Grieve PG (2005) Local coherence oscillations in the EEG during development in the fetal baboon. Clin Neurophysiol 116:2121–2128

    PubMed  Google Scholar 

  19. Scher MS, Loparo KA (2009) Neonatal EEG/sleep state analyses: a complex phenotype of developmental neural plasticity. Dev Neurosci 31:259–275

    CAS  PubMed  Google Scholar 

  20. Jouvet-Mounier D, Astic L, Lacote D (1970) Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev Psychobiol 2:216–239

    CAS  PubMed  Google Scholar 

  21. Umans JG, Cox MJ, Hinman DJ, Dogramajian ME, Senger G, Szeto HH (1985) The development of electrocortical activity in the fetal and neonatal guinea pig. Am J Obstet Gynecol 153:467–471

    CAS  PubMed  Google Scholar 

  22. Morrison JL, Chien C, Gruber N, Rurak D, Riggs KW (2001) Fetal behavioural state changes following maternal fluoxetine infusion in sheep. Dev Brain Res 131:47–56

    CAS  Google Scholar 

  23. Vo TD, Dwyer G, Szeto HH (1986) A distributed microcomputer-controlled system for data acquisition and power spectral analysis of EEG. J Neurosci Methods 16: 141–148

    CAS  PubMed  Google Scholar 

  24. Szeto HH, Vo TD, Dwyer G, Dogramajian ME, Cox MJ, Senger G (1985) The ontogeny of fetal lamb electrocortical activity: a power spectral analysis. Am J Obstet Gynecol 153: 462–466

    CAS  PubMed  Google Scholar 

  25. Szeto HH (1990) Spectral edge frequency as a simple quantitative measure of the maturation of electrocortical activity. Pediatr Res 27:289–292

    CAS  PubMed  Google Scholar 

  26. Shinozuka N, Nathanielsz PW (1998) Electrocortical activity in fetal sheep in the last seven days of gestation. J Physiol 513(Pt 1): 273–281

    PubMed Central  CAS  PubMed  Google Scholar 

  27. McNerney ME, Szeto HH (1990) Automated identification and quantitation of four patterns of electrocortical activity in the near-term fetal lamb. Pediatr Res 28:106–110

    CAS  PubMed  Google Scholar 

  28. Akay M, Akay YM, Cheng P, Szeto HH (1994) Time-frequency analysis of the electrocortical activity during maturation using wavelet transform. Biol Cybern 71:169–176

    CAS  PubMed  Google Scholar 

  29. Hatz F, Hardmeier M, Bousleiman H, Ruegg S, Schindler C, Fuhr P (2015) Reliability of fully automated versus visually controlled pre- and post-processing of resting-state EEG. Clin Neurophysiol 126(2):268–274

    CAS  PubMed  Google Scholar 

  30. Keen AE, Frasch MG, Sheehan MA, Matushewski BJ, Richardson BS (2011) Electrocortical activity in the near-term ovine fetus: automated analysis using amplitude frequency components. Brain Res 1402:30–37

    CAS  PubMed  Google Scholar 

  31. Keen AE, Frasch MG, Sheehan MA, Matushewski B, Richardson BS (2011) Maturational changes and effects of chronic hypoxemia on electrocortical activity in the ovine fetus. Brain Res 1402:38–45

    CAS  PubMed  Google Scholar 

  32. Myers MM, Stark RI, Fifer WP, Grieve PG, Haiken J, Leung K, Schulze KF (1993) A quantitative method for classification of EEG in the fetal baboon. Am J Physiol 265:R706–R714

    CAS  PubMed  Google Scholar 

  33. Wilson PC, Levy LF, Spies S, Chadwicke J (1979) The technique of fetal electroencephalography during labour. Br J Obstet Gynaecol 86:266–268

    CAS  PubMed  Google Scholar 

  34. Weller C, Dyson RJ, McFadyen IR, Green HL, Arias E (1981) Fetal electroencephalography using a new, flexible electrode. Br J Obstet Gynaecol 88:983–986

    CAS  PubMed  Google Scholar 

  35. Thaler I, Boldes R, Timor-Tritsch I (2000) Real-time spectral analysis of the fetal EEG: a new approach to monitoring sleep states and fetal condition during labor. Pediatr Res 48:340–345

    CAS  PubMed  Google Scholar 

  36. Prechtl HF (1974) The behavioural states of the newborn infant (a review). Brain Res 76:185–212

    CAS  PubMed  Google Scholar 

  37. Bots RS, Nijhuis JG, Martin CB Jr, Prechtl HF (1981) Human fetal eye movements: detection in utero by ultrasonography. Early Hum Dev 5:87–94

    CAS  PubMed  Google Scholar 

  38. Nijhuis JG, Prechtl HF, Martin CB Jr, Bots RS (1982) Are there behavioural states in the human fetus? Early Hum Dev 6:177–195

    CAS  PubMed  Google Scholar 

  39. Pillai M, James D (1990) Are the behavioural states of the newborn comparable to those of the fetus? Early Hum Dev 22:39–49

    CAS  PubMed  Google Scholar 

  40. Pillai M, James D (1990) Behavioural states in normal mature human fetuses. Arch Dis Child 65:39–43

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Finley JP, Nugent ST (1995) Heart rate variability in infants, children and young adults. J Auton Nerv Syst 51:103–108

    CAS  PubMed  Google Scholar 

  42. Mirmiran M, Maas YG, Ariagno RL (2003) Development of fetal and neonatal sleep and circadian rhythms. Sleep Med Rev 7:321–334

    PubMed  Google Scholar 

  43. Hill M, Parizek A, Bicikova M, Havlikova H, Klak J, Fait T, Cibula D, Hampl R, Cegan A, Sulcova J, Starka L (2000) Neuroactive steroids, their precursors, and polar conjugates during parturition and postpartum in maternal and umbilical blood: 1. Identification and simultaneous determination of pregnanolone isomers. J Steroid Biochem Mol Biol 75:237–244

    CAS  PubMed  Google Scholar 

  44. Bicikova M, Klak J, Hill M, Zizka Z, Hampl R, Calda P (2002) Two neuroactive steroids in midpregnancy as measured in maternal and fetal sera and in amniotic fluid. Steroids 67:399–402

    CAS  PubMed  Google Scholar 

  45. Toh S, Mitchell AA, Louik C, Werler MM, Chambers CD, Hernandez-Diaz S (2009) Selective serotonin reuptake inhibitor use and risk of gestational hypertension. Am J Psychiatry 166:320–328

    PubMed Central  PubMed  Google Scholar 

  46. Ogino M, Abe Y, Okahara T, Jimbo T (1986) Comparison of plasma prostanoid levels in the human cord artery in normal and fetal distressed deliveries. Endocrinol Jpn 33:75–80

    CAS  PubMed  Google Scholar 

  47. Visser GH, Poelmann-Weesjes G, Cohen TM, Bekedam DJ (1987) Fetal behavior at 30 to 32 weeks of gestation. Pediatr Res 22: 655–658

    CAS  PubMed  Google Scholar 

  48. Pillai M, James DK, Parker M (1992) The development of ultradian rhythms in the human fetus. Am J Obstet Gynecol 167:172–177

    CAS  PubMed  Google Scholar 

  49. Pillai M, James D (1990) Development of human fetal behavior: a review. Fetal Diagn Ther 5:15–32

    CAS  PubMed  Google Scholar 

  50. Maeda K, Tatsumura M, Nakajima K (1991) Objective and quantitative evaluation of fetal movement with ultrasonic Doppler actocardiogram. Biol Neonate 60(Suppl 1):41–51

    PubMed  Google Scholar 

  51. DiPietro JA, Hodgson DM, Costigan KA, Hilton SC, Johnson TR (1996) Development of fetal movement—fetal heart rate coupling from 20 weeks through term. Early Hum Dev 44:139–151

    CAS  PubMed  Google Scholar 

  52. DiPietro JA, Hodgson DM, Costigan KA, Hilton SC, Johnson TR (1996) Fetal neurobehavioral development. Child Dev 67:2553–2567

    CAS  PubMed  Google Scholar 

  53. Besinger RE, Johnson TR (1989) Doppler recording of fetal movement: clinical correlation with real-time ultrasound. Obstet Gynecol 74:277–280

    CAS  PubMed  Google Scholar 

  54. Visser GH, Mulder EJ, Stevens H, Verweij R (1993) Heart rate variation during fetal behavioural states 1 and 2. Early Hum Dev 34:21–28

    CAS  PubMed  Google Scholar 

  55. Pillai M, James D (1990) The importance of the behavioural state in biophysical assessment of the term human fetus. Br J Obstet Gynaecol 97:1130–1134

    CAS  PubMed  Google Scholar 

  56. Anderson AL, Thomason ME (2013) Functional plasticity before the cradle: a review of neural functional imaging in the human fetus. Neurosci Biobehav Rev 37:2220–2232

    PubMed  Google Scholar 

  57. Eswaran H, Haddad NI, Shihabuddin BS, Preissl H, Siegel ER, Murphy P, Lowery CL (2007) Non-invasive detection and identification of brain activity patterns in the developing fetus. Clin Neurophysiol 118:1940–1946

    PubMed  Google Scholar 

  58. Sonanini A, Stingl K, Preissl H, Brandle J, Hoopmann M, Kagan O, Wallwiener D, Abele H, Kiefer-Schmidt I (2014) Fetal behavioral states are stable over daytime—evidence by longitudinal and cross-sectional fetal biomagnetic recordings. J Perinat Med 42:307–314

    PubMed  Google Scholar 

  59. Govindan RB, Vairavan S, Ulusar UD, Wilson JD, McKelvey SS, Preissl H, Eswaran H (2011) A novel approach to track fetal movement using multi-sensor magnetocardiographic recordings. Ann Biomed Eng 39: 964–972

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Haddad N, Govindan RB, Vairavan S, Siegel E, Temple J, Preissl H, Lowery CL, Eswaran H (2011) Correlation between fetal brain activity patterns and behavioral states: an exploratory fetal magnetoencephalography study. Exp Neurol 228:200–205

    PubMed Central  PubMed  Google Scholar 

  61. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    CAS  PubMed  Google Scholar 

  62. Romijn HJ, Hofman MA, Gramsbergen A (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 26:61–67

    CAS  PubMed  Google Scholar 

  63. Clancy B, Kersh B, Hyde J, Darlington RB, Anand KJ, Finlay BL (2007) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5:79–94

    PubMed  Google Scholar 

  64. Wilds PL (1978) Observations of intrauterine fetal breathing movements—a review. Am J Obstet Gynecol 131:315–338

    CAS  PubMed  Google Scholar 

  65. Merlet C, Hoerter J, Devilleneuve C, Tchobroutsky C (1970) Demonstration of respiratory movements in lamb fetus in utero during the last month of gestation. C R Acad Sci Hebd Seances Acad Sci D 270:2462–2464

    CAS  PubMed  Google Scholar 

  66. Boddy K, Dawes GS, Fisher R, Pinter S, Robinson JS (1974) Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxaemia and hypercapnia in sheep. J Physiol 243:599–618

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Koos BJ, Kitanaka T, Matsuda K, Gilbert RD, Longo LD (1988) Fetal breathing adaptation to prolonged hypoxaemia in sheep. J Dev Physiol 10:161–166

    CAS  PubMed  Google Scholar 

  68. Bocking AD, Gagnon R, Milne KM, White SE (1988) Behavioral activity during prolonged hypoxemia in fetal sheep. J Appl Physiol (1985) 65:2420–2426

    CAS  Google Scholar 

  69. Harding R, Johnson P, McClelland ME (1980) Respiratory function of the larynx in developing sheep and the influence of sleep state. Respir Physiol 40:165–179

    CAS  PubMed  Google Scholar 

  70. Dawes GS, Gardner WN, Johnston BM, Walker DW (1983) Breathing in fetal lambs: the effect of brain stem section. J Physiol 335:535–553

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Gluckman PD, Johnston BM (1987) Lesions in the upper lateral pons abolish the hypoxic depression of breathing in unanaesthetized fetal lambs in utero. J Physiol 382:373–383

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Johnston BM, Gluckman PD (1989) Lateral pontine lesions affect central chemosensitivity in unanesthetized fetal lambs. J Appl Physiol (1985) 67:1113–1118

    CAS  Google Scholar 

  73. Gluckman PD, Parsons Y (1983) Stereotaxic method and atlas for the ovine fetal forebrain. J Dev Physiol 5:101–128

    CAS  PubMed  Google Scholar 

  74. Rurak D, Bessette NW (2013) Changes in fetal lamb arterial blood gas and acid-base status with advancing gestation. Am J Physiol Regul Integr Comp Physiol 304(10):R908–R916

    CAS  PubMed  Google Scholar 

  75. Ioffe S, Jansen AH, Chernick V (1984) ECoG and breathing activity in fetal lambs after undercut of cerebral cortex. J Appl Physiol Respir Environ Exerc Physiol 57:1195–1201

    CAS  PubMed  Google Scholar 

  76. Ioffe S, Jansen AH, Chernick V (1986) Effects of hypercapnia and hypoxemia on fetal breathing after decortication. J Appl Physiol (1985) 61:1071–1076

    CAS  Google Scholar 

  77. Koos BJ, Chau A, Matsuura M, Punla O, Kruger L (1998) Thalamic locus mediates hypoxic inhibition of breathing in fetal sheep. J Neurophysiol 79:2383–2393

    CAS  PubMed  Google Scholar 

  78. Koos BJ, Matsuda K (1990) Fetal breathing, sleep state, and cardiovascular responses to adenosine in sheep. J Appl Physiol (1985) 68:489–495

    CAS  Google Scholar 

  79. Koos BJ, Mason BA, Punla O, Adinolfi AM (1994) Hypoxic inhibition of breathing in fetal sheep: relationship to brain adenosine concentrations. J Appl Physiol (1985) 77: 2734–2739

    CAS  Google Scholar 

  80. Koos BJ, Maeda T, Jan C, Lopez G (2002) Adenosine A(2A) receptors mediate hypoxic inhibition of fetal breathing in sheep. Am J Obstet Gynecol 186:663–668

    CAS  PubMed  Google Scholar 

  81. Koos BJ, Chao A, Doany W (1992) Adenosine stimulates breathing in fetal sheep with brain stem section. J Appl Physiol (1985) 72:94–99

    CAS  Google Scholar 

  82. Koos BJ, Chau A, Matsuura M, Punla O, Kruger L (2000) Thalamic lesions dissociate breathing inhibition by hypoxia and adenosine in fetal sheep. Am J Physiol Regul Integr Comp Physiol 278:R831–R837

    CAS  PubMed  Google Scholar 

  83. Kelleman A, Binienda Z, Ding XY, Rittenhouse L, Mitchell M, Nathanielsz PW (1992) Prostaglandin production in the umbilical and uterine circulations in pregnant sheep at 129–136 days gestation. J Dev Physiol 17:63–67

    CAS  PubMed  Google Scholar 

  84. Wallen LD, Murai DT, Clyman RI, Lee CH, Mauray FE, Kitterman JA (1986) Regulation of breathing movements in fetal sheep by prostaglandin E2. J Appl Physiol 60:526–531

    CAS  PubMed  Google Scholar 

  85. Norton JL, Adamson SL, Bocking AD, Han VK (1996) Prostaglandin-H synthase-1 (PGHS-1) gene is expressed in specific neurons of the brain of the late gestation ovine fetus. Brain Res Dev Brain Res 95:79–96

    CAS  PubMed  Google Scholar 

  86. Tai TC, MacLusky NJ, Adamson SL (1994) Ontogenesis of prostaglandin E2 binding sites in the brainstem of the sheep. Brain Res 652:28–39

    CAS  PubMed  Google Scholar 

  87. Tai TC, Lye SJ, Adamson SL (1998) Expression of prostaglandin E2 receptor subtypes in the developing sheep brainstem. Brain Res Mol Brain Res 57:161–166

    CAS  PubMed  Google Scholar 

  88. Jones SA, Adamson SL, Bishai I, Lees J, Engelberts D, Coceani F (1993) Eicosanoids in third ventricular cerebrospinal fluid of fetal and newborn sheep. Am J Physiol 264:R135–R142

    CAS  PubMed  Google Scholar 

  89. Hollingworth SA, Jones SA, Adamson SL (1996) Rebound increase in fetal breathing movements after 24-h prostaglandin E2 infusion in fetal sheep. J Appl Physiol (1985) 80:166–175

    CAS  Google Scholar 

  90. Maloney JE, Adamson TM, Brodecky AV, Cranage S, Lambert TF, Ritchie BC (1975) Diaphragmatic activity and lung liquid flow in the unanesthetized fetal sheep. J Appl Physiol 39:423–428

    CAS  PubMed  Google Scholar 

  91. Chapman RL, Dawes GS, Rurak DW, Wilds PL (1980) Breathing movements in fetal lambs and the effect of hypercapnia. J Physiol 302:19–29

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Clewlow F, Dawes GS, Johnston BM, Walker DW (1983) Changes in breathing, electrocortical and muscle activity in unanaesthetized fetal lambs with age. J Physiol 341:463–476

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Dawes GS, Gardner WN, Johnston BM, Walker DW (1982) Effects of hypercapnia on tracheal pressure, diaphragm and intercostal electromyograms in unanaesthetized fetal lambs. J Physiol 326:461–474

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Rurak DW, Cooper CC, Taylor SM (1986) Fetal oxygen consumption and PO2 during hypercapnia in pregnant sheep. J Dev Physiol 8:447–459

    CAS  PubMed  Google Scholar 

  95. Polglase GR, Wallace MJ, Grant DA, Hooper SB (2004) Influence of fetal breathing movements on pulmonary hemodynamics in fetal sheep. Pediatr Res 56:932–938

    PubMed  Google Scholar 

  96. Bowes G, Adamson TM, Ritchie BC, Dowling M, Wilkinson MH, Maloney JE (1981) Development of patterns of respiratory activity in unanesthetized fetal sheep in utero. J Appl Physiol 50:693–700

    CAS  PubMed  Google Scholar 

  97. Cooke IR, Berger PJ (1996) Development of patterns of activity in diaphragm of fetal lamb early in gestation. J Neurobiol 30:385–396

    CAS  PubMed  Google Scholar 

  98. Rurak D, Wittman B (2013) Real-time ultrasound assessment of body and breathing movements and abdominal diameter in fetal lambs from 55 days of gestation to term. Reprod Sci 20(4):414–425

    PubMed  Google Scholar 

  99. Berger PJ, Walker AM, Horne R, Brodecky V, Wilkinson MH, Wilson F, Maloney JE (1986) Phasic respiratory activity in the fetal lamb during late gestation and labour. Respir Physiol 65:55–68

    CAS  PubMed  Google Scholar 

  100. Finkelstein DI, Andrianakis P, Luff AR, Walker DW (1992) Developmental changes in hindlimb muscles and diaphragm of sheep. Am J Physiol 263:R900–R908

    CAS  PubMed  Google Scholar 

  101. Cannata DJ, Crossley KJ, Barclay CJ, Walker DW, West JM (2011) Contribution of stretch to the change of activation properties of muscle fibers in the diaphragm at the transition from fetal to neonatal life. Front Physiol 2:109

    PubMed Central  PubMed  Google Scholar 

  102. Johnson BD, Wilson LE, Zhan WZ, Watchko JF, Daood MJ, Sieck GC (1994) Contractile properties of the developing diaphragm correlate with myosin heavy chain phenotype. J Appl Physiol 77:481–487

    CAS  PubMed  Google Scholar 

  103. Poore ER, Walker DW (1980) Chest wall movements during fetal breathing in the sheep. J Physiol 301:307–315

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Stark RI, Daniel SS, Kim YI, Leung K, Myers MM, Tropper PJ (1994) Patterns of fetal breathing in the baboon vary with EEG sleep state. Early Hum Dev 38:11–26

    CAS  PubMed  Google Scholar 

  105. Martin CB Jr, Murata Y, Petrie RH, Parer JT (1974) Respiratory movements in fetal rhesus monkeys. Am J Obstet Gynecol 119:939–948

    PubMed  Google Scholar 

  106. Kendall JZ (1977) Respiratory movements in the fetal guinea pig in utero. J Appl Physiol Respir Environ Exerc Physiol 42:661–663

    CAS  PubMed  Google Scholar 

  107. van Kan CM, de Vries JI, Luchinger AB, Mulder EJ, Taverne MA (2009) Ontogeny of fetal movements in the guinea pig. Physiol Behav 98:338–344

    PubMed  Google Scholar 

  108. Stark RI, Daniel SS, Kim YI, Leung K, Rey HR, Tropper PJ (1993) Patterns of development in fetal breathing activity in the latter third of gestation of the baboon. Early Hum Dev 32:31–47

    CAS  PubMed  Google Scholar 

  109. Kobayashi K, Lemke RP, Greer JJ (2001) Ultrasound measurements of fetal breathing movements in the rat. J Appl Physiol (1985) 91:316–320

    Google Scholar 

  110. Patrick J, Natale R, Richardson B (1978) Patterns of human fetal breathing activity at 34 to 35 weeks’ gestational age. Am J Obstet Gynecol 132:507–513

    CAS  PubMed  Google Scholar 

  111. Harding R, Fowden AL, Silver M (1991) Respiratory and non-respiratory thoracic movements in the fetal pig. J Dev Physiol 15:269–275

    CAS  PubMed  Google Scholar 

  112. Rosenfeld M, Snyder FF (1936) Fetal respiration in rabbits. Proc Soc Exp Biol Med 33:576–578

    Google Scholar 

  113. Bonar BE, Blumenfeld CM, Fenning C (1938) Studies of fetal respiratory movements: 1. Historical and present day observations. Am J Dis Child 55:1–11

    Google Scholar 

  114. Patrick J, Fetherston W, Vick H, Voegelin R (1978) Human fetal breathing movements and gross fetal body movements at weeks 34 to 35 of gestation. Am J Obstet Gynecol 130:693–699

    CAS  PubMed  Google Scholar 

  115. Pillai M, James D (1990) Hiccups and breathing in human fetuses. Arch Dis Child 65:1072–1075

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Stark RI, Daniel SS, Garland M, Jaille-Marti JC, Kim YI, Leung K, Myers MM, Tropper PJ (1994) Fetal hiccups in the baboon. Am J Physiol 267:R1479–R1487

    CAS  PubMed  Google Scholar 

  117. Timor-Tritsch IE, Dierker LJ Jr, Hertz RH, Chik L, Rosen MG (1980) Regular and irregular human fetal respiratory movement. Early Hum Dev 4:315–324

    CAS  PubMed  Google Scholar 

  118. Nijhuis JG, Martin CB Jr, Gommers S, Bouws P, Bots RS, Jongsma HW (1983) The rhythmicity of fetal breathing varies with behavioural state in the human fetus. Early Hum Dev 9:1–7

    CAS  PubMed  Google Scholar 

  119. Mulder EJ, Boersma M, Meeuse M, van der Wal M, van de Weerd E, Visser GH (1994) Patterns of breathing movements in the near-term human fetus: relationship to behavioural states. Early Hum Dev 36:127–135

    CAS  PubMed  Google Scholar 

  120. Boddy K, Robinson JS (1971) External method for detection of fetal breathing in utero. Lancet 2:1231–1233

    CAS  PubMed  Google Scholar 

  121. Boddy K, Mantell CD (1972) Observations of fetal breathing movements transmitted through maternal abdominal wall. Lancet 2: 1219–1220

    CAS  PubMed  Google Scholar 

  122. Adamson SL, Bocking A, Cousin AJ, Rapoport I, Patrick JE (1983) Ultrasonic measurement of rate and depth of human fetal breathing: effect of glucose. Am J Obstet Gynecol 147:288–295

    CAS  PubMed  Google Scholar 

  123. Cousin AJ, Rapoport I, Campbell K, Patrick JE (1983) A tracking system for pulsed ultrasound images: application to quantification of fetal breathing movements. IEEE Trans Biomed Eng 30:577–584

    CAS  PubMed  Google Scholar 

  124. Boyce ES, Dawes GS, Gough JD, Poore ER (1976) Doppler ultrasound method for detecting human fetal breathing in utero. Br Med J 2:17–18

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Trudinger BJ, Knight PC (1980) Fetal age and patterns of human fetal breathing movements. Am J Obstet Gynecol 137:724–728

    CAS  PubMed  Google Scholar 

  126. van der Mooren K, Wladimiroff JW, Stijnen T (1991) Effect of fetal breathing movements on fetal cardiac hemodynamics. Ultrasound Med Biol 17:787–790

    PubMed  Google Scholar 

  127. Burghouwt M, Wladimiroff JW (1992) Modulation of middle cerebral artery flow velocity waveforms by breathing movements in the normal term fetus. Ultrasound Med Biol 18:821–825

    CAS  PubMed  Google Scholar 

  128. Marsal K, Lindblad A, Lingman G, Eik-Nes SH (1984) Blood flow in the fetal descending aorta; intrinsic factors affecting fetal blood flow, i.e. fetal breathing movements and cardiac arrhythmia. Ultrasound Med Biol 10:339–348

    CAS  PubMed  Google Scholar 

  129. Gustafson KM, Allen JJ, Yeh HW, May LE (2011) Characterization of the fetal diaphragmatic magnetomyogram and the effect of breathing movements on cardiac metrics of rate and variability. Early Hum Dev 87:467–475

    PubMed Central  PubMed  Google Scholar 

  130. Greer JJ (2012) Control of breathing activity in the fetus and newborn. Compr Physiol 2:1873–1888

    PubMed  Google Scholar 

  131. Ratnayake U, Quinn T, Daruwalla K, Dickinson H, Walker DW (2014) Understanding the behavioural phenotype of the precocial spiny mouse. Behav Brain Res 275C:62–71

    Google Scholar 

  132. Greer JJ, Smith JC, Feldman JL (1992) Respiratory and locomotor patterns generated in the fetal rat brain stem-spinal cord in vitro. J Neurophysiol 67:996–999

    CAS  PubMed  Google Scholar 

  133. Pagliardini S, Ren J, Greer JJ (2003) Ontogeny of the pre-Botzinger complex in perinatal rats. J Neurosci 23:9575–9584

    CAS  PubMed  Google Scholar 

  134. Greer JJ, Carter JE, Allan DW (1996) Respiratory rhythm generation in a precocial rodent in vitro preparation. Respir Physiol 103:105–112

    CAS  PubMed  Google Scholar 

  135. Hantoushzadeh S, Sheikh M, Shariat M, Farahani Z (2015) Maternal perception of fetal movement type: the effect of gestational age and maternal factors. J Matern Fetal Neonatal Med 28(6):713–717

    PubMed  Google Scholar 

  136. Hijazi ZR, East CE (2009) Factors affecting maternal perception of fetal movement. Obstet Gynecol Surv 64:489–497, quiz 499

    PubMed  Google Scholar 

  137. Froen JF, Heazell AE, Tveit JV, Saastad E, Fretts RC, Flenady V (2008) Fetal movement assessment. Semin Perinatol 32:243–246

    PubMed  Google Scholar 

  138. Natale R, Clewlow F, Dawes GS (1981) Measurement of fetal forelimb movements in the lamb in utero. Am J Obstet Gynecol 140:545–551

    CAS  PubMed  Google Scholar 

  139. Kurjak A, Tikvica A, Stanojevic M, Miskovic B, Ahmed B, Azumendi G, Di Renzo GC (2008) The assessment of fetal neurobehavior by three-dimensional and four-dimensional ultrasound. J Matern Fetal Neonatal Med 21:675–684

    PubMed  Google Scholar 

  140. Patrick J, Campbell K, Carmichael L, Natale R, Richardson B (1982) Patterns of gross fetal body movements over 24-hour observation intervals during the last 10 weeks of pregnancy. Am J Obstet Gynecol 142:363–371

    CAS  PubMed  Google Scholar 

  141. de Vries JI, Fong BF (2006) Normal fetal motility: an overview. Ultrasound Obstet Gynecol 27:701–711

    PubMed  Google Scholar 

  142. de Vries JI, Visser GH, Prechtl HF (1982) The emergence of fetal behaviour: I. Qualitative aspects. Early Hum Dev 7:301–322

    PubMed  Google Scholar 

  143. Luchinger AB, Hadders-Algra M, van Kan CM, de Vries JI (2008) Fetal onset of general movements. Pediatr Res 63:191–195

    PubMed  Google Scholar 

  144. Ten Hof J, Nijhuis IJ, Mulder EJ, Nijhuis JG, Narayan H, Taylor DJ, Westers P, Visser GH (2002) Longitudinal study of fetal body movements: nomograms, intrafetal consistency, and relationship with episodes of heart rate patterns A and B. Pediatr Res 52: 568–575

    PubMed  Google Scholar 

  145. Cohen S, Mulder EJ, van Oord HA, Jonker FH, Parvizi N, van der Weijden GC, Taverne MA (2010) Fetal movements during late gestation in the pig: a longitudinal ultrasonographic study. Theriogenology 74:24–30

    CAS  PubMed  Google Scholar 

  146. Barcroft J (1946) Researches on pre-natal life. Blackwell, Oxford

    Google Scholar 

  147. Berger PJ, Kyriakides MA, Cooke IR (1997) Supraspinal influence on the development of motor behavior in the fetal lamb. J Neurobiol 33:276–288

    CAS  PubMed  Google Scholar 

  148. Fraser AF, Hastie H, Callicott RB, Brownlie S (1975) An exploratory ultrasonic study of quantitative foetal kinesis in the horse. Appl Anim Ethol 1:395–404

    Google Scholar 

  149. Fraser AF (1976) Some features of an ultrasonic study of bovine foetal kinesis. Appl Anim Ethol 2:379–383

    Google Scholar 

  150. Husa L, Bieger D, Fraser AF (1988) Fluoroscopic study of the birth posture of the sheep fetus. Vet Rec 123:645–648

    CAS  PubMed  Google Scholar 

  151. Fraser AF (1989) A monitored study of major physical activities in the perinatal calf. Vet Rec 125:38–40

    CAS  PubMed  Google Scholar 

  152. Fraser AF, Broom DM (1990) Farm animal behaviour and welfare. Balliere Tindall, New York

    Google Scholar 

  153. Sherer DM, Spong CY, Minior VK, Salafia CM (1996) Decreased amniotic fluid volume at <32 weeks of gestation is associated with decreased fetal movements. Am J Perinatol 13:479–482

    CAS  PubMed  Google Scholar 

  154. Sival DA, Visser GH, Prechtl HF (1990) Does reduction of amniotic fluid affect fetal movements? Early Hum Dev 23:233–246

    CAS  PubMed  Google Scholar 

  155. Garzetti GG, Ciavattini A, De Cristofaro F, La Marca N, Arduini D (1997) Prophylactic transabdominal amnioinfusion in oligohydramnios for preterm premature rupture of membranes: increase of amniotic fluid index during latency period. Gynecol Obstet Invest 44:249–254

    CAS  PubMed  Google Scholar 

  156. Nguyen PN, Billiards SS, Walker DW, Hirst JJ (2003) Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in fetal sheep with umbilicoplacental embolization. Pediatr Res 54:840–847

    CAS  PubMed  Google Scholar 

  157. Young IR, Thorburn GD (1994) Prostaglandin E2, fetal maturation and ovine parturition. Aust N Z J Obstet Gynaecol 34: 342–346

    CAS  PubMed  Google Scholar 

  158. Luisi S, Petraglia F, Benedetto C, Nappi RE, Bernardi F, Fadalti M, Reis FM, Luisi M, Genazzani AR (2000) Serum allopregnanolone levels in pregnant women: changes during pregnancy, at delivery, and in hypertensive patients. J Clin Endocrinol Metab 85:2429–2433

    CAS  PubMed  Google Scholar 

  159. Boddy K, Dawes GS, Robinson JS (1973) A 24-hour rhythm in the foetus. In: Cross K, Comline R, Dawes GS, Nathanielsz P (eds) Foetal and neonatal physiology: proceedings of the barcroft symposium. Cambridge University Press, Cambridge, pp 63–66

    Google Scholar 

  160. Brace RA, Moore TR (1991) Diurnal rhythms in fetal urine flow, vascular pressures, and heart rate in sheep. Am J Physiol 261:R1015–R1021

    CAS  PubMed  Google Scholar 

  161. Morrison JL, Rurak DW, Chien C, Kennaway DJ, Gruber N, McMillen IC, Riggs KW (2005) Maternal fluoxetine infusion does not alter fetal endocrine and biophysical circadian rhythms in pregnant sheep. J Soc Gynecol Investig 12:356–364

    CAS  PubMed  Google Scholar 

  162. Jensen EC, Bennet L, Guild SJ, Booth LC, Stewart J, Gunn AJ (2009) The role of the neural sympathetic and parasympathetic systems in diurnal and sleep state-related cardiovascular rhythms in the late-gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol 297:R998–R1008

    CAS  PubMed  Google Scholar 

  163. Stark RI, Garland M, Daniel S, Myers MM (1998) Diurnal rhythm of fetal behavioral state. Sleep 21:167–176

    CAS  PubMed  Google Scholar 

  164. Rurak D, Lim K, Sanders A, Brain U, Riggs W, Oberlander TF (2011) Third trimester fetal heart rate and Doppler middle cerebral artery blood flow velocity characteristics during prenatal selective serotonin reuptake inhibitor exposure. Pediatr Res 70:96–101

    CAS  PubMed  Google Scholar 

  165. Nowak R, Young IR, McMillen IC (1990) Emergence of the diurnal rhythm in plasma melatonin concentrations in newborn lambs delivered to intact or pinealectomized ewes. J Endocrinol 125:97–102

    CAS  PubMed  Google Scholar 

  166. Kennaway DJ, Goble FC, Stamp GE (1996) Factors influencing the development of melatonin rhythmicity in humans. J Clin Endocrinol Metab 81:1525–1532

    CAS  PubMed  Google Scholar 

  167. Joseph D, Chong NW, Shanks ME, Rosato E, Taub NA, Petersen SA, Symonds ME, Whitehouse WP, Wailoo M (2015) Getting rhythm: how do babies do it? Arch Dis Child Fetal Neonatal Ed 100:F50–F54

    PubMed  Google Scholar 

  168. Yellon SM, Longo LD (1987) Melatonin rhythms in fetal and maternal circulation during pregnancy in sheep. Am J Physiol 252:E799–802

    CAS  PubMed  Google Scholar 

  169. Zemdegs IZ, McMillen IC, Walker DW, Thorburn GD, Nowak R (1988) Diurnal rhythms in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation. Endocrinology 123:284–289

    CAS  PubMed  Google Scholar 

  170. Yellon SM, Longo LD (1988) Effect of maternal pinealectomy and reverse photoperiod on the circadian melatonin rhythm in the sheep and fetus during the last trimester of pregnancy. Biol Reprod 39:1093–1099

    CAS  PubMed  Google Scholar 

  171. McMillen IC, Nowak R (1989) Maternal pinealectomy abolishes the diurnal rhythm in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation. J Endocrinol 120:459–464

    CAS  PubMed  Google Scholar 

  172. McMillen IC, Nowak R, Walker DW, Young IR (1990) Maternal pinealectomy alters the daily pattern of fetal breathing in sheep. Am J Physiol 258:R284–R287

    CAS  PubMed  Google Scholar 

  173. Houghton DC, Walker DW, Young IR, McMillen IC (1993) Melatonin and the light-dark cycle separately influence daily behavioral and hormonal rhythms in the pregnant ewe and sheep fetus. Endocrinology 133:90–98

    CAS  PubMed  Google Scholar 

  174. Dunn PM (1999) John Braxton Hicks (1823–97) and painless uterine contractions. Arch Dis Child Fetal Neonatal Ed 81:F157–F158

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Jansen CA, Krane EJ, Thomas AL, Beck NF, Lowe KC, Joyce P, Parr M, Nathanielsz PW (1979) Continuous variability of fetal PO2 in the chronically catheterized fetal sheep. Am J Obstet Gynecol 134:776–783

    CAS  PubMed  Google Scholar 

  176. Harding R, Poore ER, Bailey A, Thorburn GD, Jansen CA, Nathanielsz PW (1982) Electromyographic activity of the nonpregnant and pregnant sheep uterus. Am J Obstet Gynecol 142:448–457

    CAS  PubMed  Google Scholar 

  177. Lye SJ, Freitag CL (1988) An in-vivo model to examine the electromyographic activity of isolated myometrial tissue from pregnant sheep. J Reprod Fertil 82:51–61

    CAS  PubMed  Google Scholar 

  178. Towell ME, Regier I, Lysak I, Sayler D, Bessman SP (1983) Maternal and fetal tissue PO2 in the pregnant ewe measured with galvanic PO2 electrodes. Adv Exp Med Biol 159: 37–48

    CAS  PubMed  Google Scholar 

  179. Llanos AJ, Court DJ, Block BS, Germain AM, Parer JT (1986) Fetal cardiorespiratory changes during spontaneous prelabor uterine contractions in sheep. Am J Obstet Gynecol 155:893–897

    CAS  PubMed  Google Scholar 

  180. Sunderji SG, El Badry A, Poore ER, Figueroa JP, Nathanielsz PW (1984) The effect of myometrial contractures on uterine blood flow in the pregnant sheep at 114 to 140 days' gestation measured by the 4-aminoantipyrine equilibrium diffusion technique. Am J Obstet Gynecol 149:408–412

    CAS  PubMed  Google Scholar 

  181. Harding R, Poore ER (1984) The effects of myometrial activity on fetal thoracic dimensions and uterine blood flow during late gestation in the sheep. Biol Neonate 45:244–251

    CAS  PubMed  Google Scholar 

  182. Nathanielsz PW, Bailey A, Poore ER, Thorburn GD, Harding R (1980) The relationship between myometrial activity and sleep state and breathing in fetal sheep throughout the last third of gestation. Am J Obstet Gynecol 138:653–659

    CAS  PubMed  Google Scholar 

  183. Walker DW, Harding R (1986) The effects of raising intracranial pressure on breathing movements, eye movements and electrocortical activity in fetal sheep. J Dev Physiol 8:105–116

    CAS  PubMed  Google Scholar 

  184. Shields LE, Brace RA (1994) Fetal vascular pressure responses to nonlabor uterine contractions: dependence on amniotic fluid volume in the ovine fetus. Am J Obstet Gynecol 171:84–89

    CAS  PubMed  Google Scholar 

  185. Lye SJ, Wlodek ME, Challis JR (1984) Relation between fetal arterial PO2 and oxytocin-induced uterine contractions in pregnant sheep. Can J Physiol Pharmacol 62:1337–1340

    CAS  PubMed  Google Scholar 

  186. Lye SJ, Wlodek ME, Challis JR (1985) Possible role of uterine contractions in the short-term fluctuations of plasma ACTH concentration in fetal sheep. J Endocrinol 106:R9–R11

    CAS  PubMed  Google Scholar 

  187. Woudstra B, Kim C, Aarnoudse J, Nathanielsz P (1991) Myometrial contracture-related increases in plasma adrenocorticotropin in fetal sheep in the last 3rd of gestation are abolished by maintaining fetal normoxemia. Endocrinology 129:1709–1713

    CAS  PubMed  Google Scholar 

  188. Hofmeyr GJ, Bamford OS, Gianopoulos JG, Parkes MJ, Dawes GS (1985) The partial association of uterine contractions with changes in electrocortical activity, breathing, and PaO2 in the fetal lamb: effects of brain stem section. Am J Obstet Gynecol 152: 905–910

    CAS  PubMed  Google Scholar 

  189. Wilkinson C, Robinson J (1982) Braxton-Hicks contractions and fetal breathing movements. Aust N Z J Obstet Gynaecol 22:212–214

    CAS  PubMed  Google Scholar 

  190. Mulder EJ, Visser GH (1987) Braxton Hicks’ contractions and motor behavior in the near-term human fetus. Am J Obstet Gynecol 156(3):543–549

    CAS  PubMed  Google Scholar 

  191. Norman LJ, Lye SJ, Wlodek ME, Challis JR (1985) Changes in pituitary responses to synthetic ovine corticotrophin releasing factor in fetal sheep. Can J Physiol Pharmacol 63:1398–1403

    CAS  PubMed  Google Scholar 

  192. Liggins GC (1994) The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev 6:141–150

    CAS  PubMed  Google Scholar 

  193. Harding R, Sigger JN, Wickham PJ (1983) Fetal and maternal influences on arterial oxygen levels in the sheep fetus. J Dev Physiol 5:267–276

    CAS  PubMed  Google Scholar 

  194. King J, Grant A, Keirse M, Chalmers I (1988) Beta-mimetics in preterm labor—an overview of the randomized controlled trials. Br J Obstet Gynaecol 95:211–222

    CAS  PubMed  Google Scholar 

  195. Casper R, Lye S (1986) Myometrial desensitization to continuous but not to intermittent beta-adrenergic agonist infusion in the sheep. Am J Obstet Gynecol 154:301–305

    CAS  PubMed  Google Scholar 

  196. Benedetti T (1986) Life-threatening complications of beta-mimetic therapy for preterm labor inhibition. Clin Perinatol 13:843–852

    CAS  PubMed  Google Scholar 

  197. Vanderweyde M, Wright M, Taylor S, Axelson J, Rurak D (1992) Metabolic effects of ritodrine in the fetal lamb. J Pharmacol Exp Ther 262:48–59

    CAS  Google Scholar 

  198. Sadowsky DW, Martel JK, Jenkins SL, Poore MG, Cabalum T, Nathanielsz PW (1992) Pulsatile oxytocin administered to ewes at 120 to 140 days gestational age increases the rate of maturation of the fetal electrocorticogram and nuchal activity. J Dev Physiol 17:175–181

    CAS  PubMed  Google Scholar 

  199. Owiny JR, Sadowsky D, Zarzeczny S, Nathanielsz PW (1995) Effect of pulsatile intravenous oxytocin administration to pregnant sheep over the last third of gestation on fetal ACTH and cortisol responses to hypotension. J Soc Gynecol Investig 2:13–18

    CAS  PubMed  Google Scholar 

  200. Shinozuka N, Yen A, Nathanielsz P (1999) Alteration of fetal oxygenation and responses to acute hypoxemia by increased myometrial contracture frequency produced by pulse administration of oxytocin to the pregnant ewe from 96 to 131 days’ gestation. Am J Obstet Gynecol 180:1202–1208

    CAS  PubMed  Google Scholar 

  201. Shinozuka N, Yen A, Nathanielsz P (2000) Increased myometrial contracture frequency at 96–140 days accelerates fetal cardiovascular maturation. Am J Physiol Heart Circ Physiol 278:H41–H49

    CAS  PubMed  Google Scholar 

  202. Porter D (1971) Quantitative changes in myometrial activity in guinea-pig during pregnancy. J Reprod Fertil 27:219–226

    CAS  PubMed  Google Scholar 

  203. Wittmann BK, Rurak DW, Gruber N, Brown S (1981) Real-time ultrasound observation of breathing and movements in the fetal lamb. Am J Obstet Gynecol 141:807–810

    CAS  PubMed  Google Scholar 

  204. Mandruzzato G, Meir YJ, Natale R, Maso G (2001) Antepartal assessment of IUGR fetuses. J Perinat Med 29:222–229

    CAS  PubMed  Google Scholar 

  205. Walton JR, Peaceman AM (2012) Identification, assessment and management of fetal compromise. Clin Perinatol 39:753–783

    PubMed  Google Scholar 

  206. Bocking AD (2003) Assessment of fetal heart rate and fetal movements in detecting oxygen deprivation in-utero. Eur J Obstet Gynecol Reprod Biol 110(Suppl 1):S108–S112

    PubMed  Google Scholar 

  207. Bocking A, Harding R, Wickham P (1985) Relationship between accelerations and decelerations in heart-rate and skeletal-muscle activity in fetal sheep. J Dev Physiol 7:47–54

    CAS  PubMed  Google Scholar 

  208. Spencer J, Ryan G, Ronderosdumit D, Nicolini U, Rodeck C (1994) The effect of neuromuscular blockade on human fetal heart-rate and its variation. Br J Obstet Gynaecol 101:121–124

    CAS  PubMed  Google Scholar 

  209. Rudolph A, Heymann M (1976) Cardiac-output in fetal lamb—effects of spontaneous and induced changes of heart-rate on right and left-ventricular output. Am J Obstet Gynecol 124:183–192

    CAS  PubMed  Google Scholar 

  210. Rurak DW, Gruber NC (1983) Increased oxygen consumption associated with breathing activity in fetal lambs. J Appl Physiol 54:701–707

    CAS  PubMed  Google Scholar 

  211. Rurak DW, Gruber NC (1983) The effect of neuromuscular blockade on oxygen consumption and blood gases in the fetal lamb. Am J Obstet Gynecol 145:258–262

    CAS  PubMed  Google Scholar 

  212. Wilkening RB, Boyle DW, Meschia G (1989) Fetal neuromuscular blockade: effect on oxygen demand and placental transport. Am J Physiol 257:H734–H738

    CAS  PubMed  Google Scholar 

  213. Rurak DW, Taylor SM (1986) Oxygen consumption in fetal lambs after maternal administration of sodium pentobarbital. Am J Obstet Gynecol 154:674–678

    CAS  PubMed  Google Scholar 

  214. Harding R, Poore ER, Cohen GL (1981) The effect of brief episodes of diminished uterine blood flow on breathing movements, sleep states and heart rate in fetal sheep. J Dev Physiol 3:231–243

    CAS  PubMed  Google Scholar 

  215. Llanos AJ, Block BS, Court DJ, Germain AM, Parer JT (1988) Fetal oxygen uptake during uterine contractures. J Dev Physiol 10:525–529

    CAS  PubMed  Google Scholar 

  216. Dawes G, Duncan S, Lewis B, Merlet C, Owenthom JB, Reeves J (1969) Hypoxaemia and aortic chemoreceptor function in foetal lambs. J Physiol 201:105–116

    PubMed Central  CAS  PubMed  Google Scholar 

  217. Rurak DW, Cooper C (1984) The effect of relative hypoxemia on the pattern of breathing movements in fetal lambs. Respir Physiol 55:23–37

    CAS  PubMed  Google Scholar 

  218. Woudstra BR, de Wolf BT, Smits TM, Nathanielsz PW, Zijlstra WG, Aarnoudse JG (1995) Variability of continuously measured arterial pH and blood gas values in the near term fetal lamb. Pediatr Res 38:528–532

    CAS  PubMed  Google Scholar 

  219. Torre-Bueno JR, Wagner PD, Saltzman HA, Gale GE, Moon RE (1985) Diffusion limitation in normal humans during exercise at sea level and simulated altitude. J Appl Physiol 58(3):989–995

    CAS  PubMed  Google Scholar 

  220. Abrams RM, Gerhardt KJ (2000) The acoustic environment and physiological responses of the fetus. J Perinatol 20(8 Pt 2):S31–S36

    CAS  PubMed  Google Scholar 

  221. Moessinger AC (1983) Fetal akinesia deformation sequence: an animal model. Pediatrics 72:857–863

    CAS  PubMed  Google Scholar 

  222. Hall JG (2009) Pena-Shokeir phenotype (fetal akinesia deformation sequence) revisited. Birth Defects Res A Clin Mol Teratol 85(8):677–694. doi:10.1002/Bdra.20611

    CAS  PubMed  Google Scholar 

  223. Alcorn D, Adamson T, Maloney J, Robinson P (1980) Morphological effects of chronic bilateral phrenectomy or vagotomy in the fetal lamb lung. J Anat 130:683–695

    PubMed Central  CAS  PubMed  Google Scholar 

  224. Alcorn D, Adamson T, Lambert T, Maloney J, Ritchie B, Robinson P (1977) Morphological effects of chronic tracheal ligation and drainage in fetal lamb lung. J Anat 123:649–660

    PubMed Central  CAS  PubMed  Google Scholar 

  225. Wigglesworth JS, Desai R (1979) Effect on lung growth of cervical cord section in the rabbit fetus. Early Hum Dev 3:51–65

    CAS  PubMed  Google Scholar 

  226. Liggins GC, Vilos GA, Campos GA, Kitterman JA, Lee CH (1981) The effect of bilateral thoracoplasty on lung development in fetal sheep. J Dev Physiol 3:275–282

    CAS  PubMed  Google Scholar 

  227. Ribbert LS, Visser GH, Mulder EJ, Zonneveld MF, Morssink LP (1993) Changes with time in fetal heart rate variation, movement incidences and haemodynamics in intrauterine growth retarded fetuses: a longitudinal approach to the assessment of fetal well being. Early Hum Dev 31:195–208

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Rurak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rurak, D. (2016). Fetal Sleep and Spontaneous Behavior In Utero: Animal and Clinical Studies. In: Walker, D. (eds) Prenatal and Postnatal Determinants of Development. Neuromethods, vol 109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3014-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3014-2_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3013-5

  • Online ISBN: 978-1-4939-3014-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics