Skip to main content

Placental Transport and Metabolism: Implications for the Developmental Effects of Selective Serotonin Reuptake Inhibitors (SSRI) Antidepressants

  • Protocol
Prenatal and Postnatal Determinants of Development

Part of the book series: Neuromethods ((NM,volume 109))

Abstract

A host of neurodevelopmental processes are modulated by serotonin (5-HT), a molecule also implicated in the etiology of diverse psychiatric disorders. Prenatal exposures that affect serotonergic signaling and the developing 5-HT system are increasingly associated with multiple long-term repercussions for the offspring. Both maternal depression and antidepressant treatments have been shown to affect fetal neurodevelopment during pregnancy, possibly through alterations of 5-HT levels that are otherwise precisely set by placental and endogenous sources. The result of such dysregulation impacts a variety of critical signaling pathways, and eventually leads to long-term effects on postnatal brain function. This chapter provides investigators with details of recently developed methods that can be applied to the study of how maternal–fetal transfer of therapeutic drugs, such as selective serotonin reuptake inhibitors (SSRIs), cross the placenta and impact fetal brain circuit development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  CAS  PubMed  Google Scholar 

  2. American College of Neuropsychopharmacology (2002) Neuropsychopharmacology: the fifth generation of progress: an official publication of the American College of Neuropsychopharmacology. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  3. Blasi G, De Virgilio C, Papazacharias A et al (2013) Converging evidence for the association of functional genetic variation in the serotonin receptor 2a gene with prefrontal function and olanzapine treatment. JAMA Psychiatry 70:921–930

    Article  CAS  PubMed  Google Scholar 

  4. Stein MB, Seedat S, Gelernter J (2006) Serotonin transporter gene promoter polymorphism predicts SSRI response in generalized social anxiety disorder. Psychopharmacology (Berl) 187:68–72

    Article  CAS  Google Scholar 

  5. Hu X-Z, Lipsky RH, Zhu G et al (2006) Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet 78:815–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gorman JM, Kent JM (1999) SSRIs and SNRIs: broad spectrum of efficacy beyond major depression. J Clin Psychiatry 60(Suppl 4):33–38, discussion 39

    PubMed  Google Scholar 

  7. Lidov HG, Molliver ME (1982) An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res Bull 8:389–430

    Article  CAS  PubMed  Google Scholar 

  8. Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012

    Article  CAS  PubMed  Google Scholar 

  9. Lebrand C, Cases O, Wehrlé R et al (1998) Transient developmental expression of monoamine transporters in the rodent forebrain. J Comp Neurol 401:506–524

    Article  CAS  PubMed  Google Scholar 

  10. Lebrand C, Cases O, Adelbrecht C et al (1996) Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17:823–835

    Article  CAS  PubMed  Google Scholar 

  11. Brüning G, Liangos O (1997) Transient expression of the serotonin transporter in the developing mouse thalamocortical system. Acta Histochem 99:117–121

    Article  PubMed  Google Scholar 

  12. Brüning G, Liangos O, Baumgarten HG (1997) Prenatal development of the serotonin transporter in mouse brain. Cell Tissue Res 289:211–221

    Article  PubMed  Google Scholar 

  13. Chugani DC, Muzik O, Behen M et al (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45:287–295

    Article  CAS  PubMed  Google Scholar 

  14. Whitaker-Azmitia PM (2001) Serotonin and brain development: role in human developmental diseases. Brain Res Bull 56:479–485

    Article  CAS  PubMed  Google Scholar 

  15. Sodhi MSK, Sanders-Bush E (2004) Serotonin and brain development. Int Rev Neurobiol 59:111–174

    Article  CAS  PubMed  Google Scholar 

  16. Bonnin A, Levitt P (2012) Placental source for 5-HT that tunes fetal brain development. Neuropsychopharmacology 37:299–300

    Article  PubMed Central  PubMed  Google Scholar 

  17. Velasquez JC, Goeden N, Bonnin A (2013) Placental serotonin: implications for the developmental effects of SSRIs and maternal depression. Front Cell Neurosci 7:47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Harrington RA, Lee L-C, Crum RM et al (2013) Serotonin hypothesis of autism: implications for selective serotonin reuptake inhibitor use during pregnancy. Autism Res 3:149–168

    Article  Google Scholar 

  19. Harrington RA, Lee L-C, Crum RM et al (2014) Prenatal SSRI use and offspring with autism spectrum disorder or developmental delay. Pediatrics. doi:10.1542/peds.2013–3406

    Google Scholar 

  20. Holmes A, Li Q, Murphy DL et al (2003) Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2(6):365–380

    Article  CAS  PubMed  Google Scholar 

  21. Holmes A, Yang RJ, Lesch K-P et al (2003) Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28:2077–2088

    CAS  PubMed  Google Scholar 

  22. Ansorge MS, Zhou M, Lira A et al (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306:879–881

    Article  CAS  PubMed  Google Scholar 

  23. Nordquist N, Oreland L (2010) Serotonin, genetic variability, behaviour, and psychiatric disorders – a review. Ups J Med Sci 115:2–10

    Article  PubMed Central  PubMed  Google Scholar 

  24. Malkova NV, Yu CZ, Hsiao EY et al (2012) Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun 26:607–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Oberlander TF (2012) Fetal serotonin signaling: setting pathways for early childhood development and behavior. J Adolesc Health 51:S9–S16

    Article  PubMed  Google Scholar 

  26. Bonnin A, Levitt P (2011) Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience 197:1–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ganu RS, Harris RA, Collins K et al (2012) Early origins of adult disease: approaches for investigating the programmable epigenome in humans, nonhuman primates, and rodents. ILAR J 53:306–321

    Article  PubMed Central  PubMed  Google Scholar 

  28. Bonnin A, Peng W, Hewlett W et al (2006) Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience 141:781–794

    Article  CAS  PubMed  Google Scholar 

  29. Bonnin A, Goeden N, Chen K et al (2011) A transient placental source of serotonin for the fetal forebrain. Nature 472:347–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Pattyn A, Simplicio N, van Doorninck JH et al (2004) Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat Neurosci 7:589–595

    Article  CAS  PubMed  Google Scholar 

  31. Hawthorne AL, Wylie CJ, Landmesser LT et al (2010) Serotonergic neurons migrate radially through the neuroepithelium by dynamin-mediated somal translocation. J Neurosci 30:420–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bonnin A, Torii M, Wang L et al (2007) Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci 10:588–597

    Article  CAS  PubMed  Google Scholar 

  33. van Kleef ESB, Gaspar P, Bonnin A (2012) Insights into the complex influence of 5-HT signaling on thalamocortical axonal system development. Eur J Neurosci 35:1563–1572

    Article  PubMed Central  PubMed  Google Scholar 

  34. Brezun J, Daszuta A (1999) Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89:999–1002

    Article  CAS  PubMed  Google Scholar 

  35. Brezun JM, Daszuta A (2000) Serotonergic reinnervation reverses lesion-induced decreases in PSA-NCAM labeling and proliferation of hippocampal cells in adult rats. Hippocampus 10:37–46

    Article  CAS  PubMed  Google Scholar 

  36. Brezun J, Daszuta A (2008) Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur J Neurosci 12:391–396

    Article  Google Scholar 

  37. Kindt KS, Tam T, Whiteman S et al (2002) Serotonin promotes G(o)-dependent neuronal migration in Caenorhabditis elegans. Curr Biol 12:1738–1747

    Article  CAS  PubMed  Google Scholar 

  38. Banasr M, Hery M, Printemps R et al (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460

    Article  CAS  PubMed  Google Scholar 

  39. Ansorge MS, Morelli E, Gingrich JA (2008) Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 28:199–207

    Article  CAS  PubMed  Google Scholar 

  40. Oberlander TF, Gingrich JA, Ansorge MS (2009) Sustained neurobehavioral effects of exposure to SSRI antidepressants during development: molecular to clinical evidence. Clin Pharmacol Ther 86:672–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Gross C, Zhuang X, Stark K et al (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400

    Article  CAS  PubMed  Google Scholar 

  42. Oberlander TF, Warburton W, Misri S et al (2006) Neonatal outcomes after prenatal exposure to selective serotonin reuptake inhibitor antidepressants and maternal depression using population-based linked health data. Arch Gen Psychiatry 63:898–906

    Article  PubMed  Google Scholar 

  43. Olivier JDA, Akerud H, Kaihola H et al (2013) The effects of maternal depression and maternal selective serotonin reuptake inhibitor exposure on offspring. Front Cell Neurosci 7:73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Suri R, Altshuler L, Hellemann G et al (2007) Effects of antenatal depression and antidepressant treatment on gestational age at birth and risk of preterm birth. Am J Psychiatry 164:1206–1213

    Article  PubMed  Google Scholar 

  45. Cooper WO, Willy ME, Pont SJ et al (2007) Increasing use of antidepressants in pregnancy. Am J Obstet Gynecol 196:544.e1–5

    PubMed  Google Scholar 

  46. Bourke CH, Stowe ZN, Owens MJ (2014) Prenatal antidepressant exposure: clinical and preclinical findings. Pharmacol Rev 66:435–465

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hiemke C, Härtter S (2000) Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85:11–28

    Article  CAS  PubMed  Google Scholar 

  48. Narboux-Nême N, Pavone LM, Avallone L et al (2008) Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs). Neuropharmacology 55:994–1005

    Article  PubMed  Google Scholar 

  49. Bonnin A, Zhang L, Blakely RD et al (2012) The SSRI citalopram affects fetal thalamic axon responsiveness to netrin-1 in vitro independently of SERT antagonism. Neuropsychopharmacology 37:1879–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Moses-Kolko EL, Bogen D, Perel J et al (2005) Neonatal signs after late in utero exposure to serotonin reuptake inhibitors: literature review and implications for clinical applications. JAMA 293:2372–2383

    Article  CAS  PubMed  Google Scholar 

  51. Bonari L, Pinto N, Ahn E et al (2004) Perinatal risks of untreated depression during pregnancy. Can J Psychiatry 49:726–735

    PubMed  Google Scholar 

  52. Davis EP, Sandman CA (2012) Prenatal psychobiological predictors of anxiety risk in preadolescent children. Psychoneuroendocrinology 37:1224–1233

    Article  PubMed Central  PubMed  Google Scholar 

  53. Deave T, Heron J, Evans J et al (2008) The impact of maternal depression in pregnancy on early child development. BJOG 115:1043–1051

    Article  CAS  PubMed  Google Scholar 

  54. Croen LA, Grether JK, Yoshida CK et al (2011) Antidepressant use during pregnancy and childhood autism spectrum disorders. Arch Gen Psychiatry 68:1104–1112

    Article  PubMed  Google Scholar 

  55. Simon GE (2002) Outcomes of prenatal antidepressant exposure. Am J Psychiatry 159:2055–2061

    Article  PubMed  Google Scholar 

  56. Källén B (2004) Neonate characteristics after maternal use of antidepressants in late pregnancy. Arch Pediatr Adolesc Med 158:312–316

    Article  PubMed  Google Scholar 

  57. Lund N, Pedersen LH, Henriksen TB (2009) Selective serotonin reuptake inhibitor exposure in utero and pregnancy outcomes. Arch Pediatr Adolesc Med 163:949–954

    Article  PubMed  Google Scholar 

  58. Sit D, Perel JM, Wisniewski SR et al (2011) Mother-infant antidepressant concentrations, maternal depression, and perinatal events. J Clin Psychiatry 72:994–1001

    Article  PubMed Central  PubMed  Google Scholar 

  59. Yonkers KA, Norwitz ER, Smith MV et al (2012) Depression and serotonin reuptake inhibitor treatment as risk factors for preterm birth. Epidemiology 23:9

    Article  Google Scholar 

  60. Hostetter A, Ritchie JC, Stowe ZN (2000) Amniotic fluid and umbilical cord blood concentrations of antidepressants in three women. Biol Psychiatry 48:1032–1034

    Article  CAS  PubMed  Google Scholar 

  61. Hendrick V (2003) Placental passage of antidepressant medications. Am J Psychiatry 160:993–996

    Article  PubMed  Google Scholar 

  62. Heikkine T, Ekblad U, Laine K (2002) Transplacental transfer of citalopram, fluoxetine and their primary demethylated metabolites in isolated perfused human placenta. BJOG 109:1003–1008

    Article  PubMed  Google Scholar 

  63. Uusküla L, Männik J, Rull K et al (2012) Mid-gestational gene expression profile in placenta and link to pregnancy complications. PLoS One 7:e49248

    Article  PubMed Central  PubMed  Google Scholar 

  64. Sitras V, Fenton C, Paulssen R et al (2012) Differences in gene expression between first and third trimester human placenta: a microarray study. PLoS One 7:e33294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Mikheev AM, Nabekura T, Kaddoumi A et al (2008) Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study. Reprod Sci 15:866–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ganapathy V, Ramamoorthy S, Leibach F (1993) Transport and metabolism of monoamines in the human placenta – a review. Placenta 35–51

    Google Scholar 

  67. Yavarone MS, Shuey DL, Sadler TW et al (1993) Serotonin uptake in the ectoplacental cone and placenta of the mouse. Placenta 14:149–161

    Article  CAS  PubMed  Google Scholar 

  68. Shearman LP et al (1998) Relationship between [125I]RTI-55-labeled cocaine binding sites and the serotonin transporter in rat placenta. Am J Physiol 275:1621–1629

    Google Scholar 

  69. Verhaagh S, Barlow DP, Zwart R (2001) The extraneuronal monoamine transporter Slc22a3/Orct3 co-localizes with the Maoa metabolizing enzyme in mouse placenta. Mech Dev 100:127–130

    Article  CAS  PubMed  Google Scholar 

  70. Goeden N, Bonnin A (2013) Ex vivo perfusion of mid-to-late-gestation mouse placenta for maternal-fetal interaction studies during pregnancy. Nat Protoc 8:66–74

    Article  CAS  PubMed  Google Scholar 

  71. Goeden N, Bonnin A (2014) Ex vivo perfusion of the mouse placenta for maternal–fetal interaction studies. In: Annecorry B et al (eds) The guide to investigation of mouse pregnancy, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  72. Heikkinen T, Ekblad U, Palo P et al (2003) Pharmacokinetics of fluoxetine and norfluoxetine in pregnancy and lactation. Clin Pharmacol Ther 73:330–337

    Article  CAS  PubMed  Google Scholar 

  73. Mathiesen L, Mose T, Mørck TJ et al (2010) Quality assessment of a placental perfusion protocol. Reprod Toxicol 30:138–146

    Article  CAS  PubMed  Google Scholar 

  74. Menjoge AR, Rinderknecht AL, Navath RS et al (2011) Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy. J Control Release 150:326–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Crowley JJ, Brodkin ES, Blendy JA et al (2006) Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. Neuropsychopharmacology 31:2433–2442

    Article  CAS  PubMed  Google Scholar 

  76. Cryan JF, O’Leary OF, Jin S-H et al (2004) Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proc Natl Acad Sci U S A 101:8186–8191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Eagleson KL, Bonnin A, Levitt PAT (2005) Region- and age-specific deficits in γ-aminobutyric acidergic neuron development in the telencephalon of the uPAR –/– mouse. J Comp Neurol 466:449–466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Bonnin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Velasquez, J.C., Bonnin, A. (2016). Placental Transport and Metabolism: Implications for the Developmental Effects of Selective Serotonin Reuptake Inhibitors (SSRI) Antidepressants. In: Walker, D. (eds) Prenatal and Postnatal Determinants of Development. Neuromethods, vol 109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3014-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3014-2_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3013-5

  • Online ISBN: 978-1-4939-3014-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics