Skip to main content

Models of Perinatal Compromises in the Guinea Pig: Their Use in Showing the Role of Neurosteroids in Pregnancy and the Newborn

  • Protocol

Part of the book series: Neuromethods ((NM,volume 109))

Abstract

Placental progesterone production during late gestation has a major role in maintaining elevated neurosteroid levels during pregnancy. These levels of key neurosteroids, including allopregnanolone, are critical for optimal brain development during late gestation and the early neonatal period. The long gestation period (~70), in utero brain development and placental progesterone synthesis of the guineas pig makes this species very suitable for studying the mechanisms by which pregnancy compromises impact neurosteroid pathways. We have used models of intrauterine growth restriction and preterm birth to show that these challenges may suppress neurosteroid action and this likely contributes to the adverse outcomes following these conditions. Reduced allopregnanolone levels during late gestation result in reduced myelination and injurious brain cell death suggesting supplementation treatments may improve outcomes following compromised pregnancy. Guinea pig models of episodic prenatal maternal stress have been used to examine how these events lead to adverse behavioral outcomes for the offspring. We found that prenatal stress disrupts the neurosteroid pathways between the dam and fetus. Together this work indicates that compromises and stress during pregnancy and in the early neonatal period disrupt neurotropic and protective neurosteroid pathways leading to deficiencies that contribute to the adverse neurological and behavioral outcomes following these challenges. The use of neurosteroid-based supplementation therapies may represent a future range of therapeutic approaches that could be used to improve outcomes following stressful events in pregnancy and following premature birth.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mitchell BF, Taggart MJ (2009) Are animal models relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol 297(3):R525–R545

    Article  CAS  PubMed  Google Scholar 

  2. Hirst JJ, Walker DW, Yawno T, Palliser HK (2009) Stress in pregnancy: a role for neuroactive steroids in protecting the fetal and neonatal brain. Dev Neurosci 31(5):363–377

    Article  CAS  PubMed  Google Scholar 

  3. Hennessy MB, O’Leary SK, Hawke JL, Wilson SE (2002) Social influences on cortisol and behavioral responses of preweaning, periadolescent, and adult guinea pigs. Physiol Behav 76(2):305–314

    Article  CAS  PubMed  Google Scholar 

  4. Dobbing J, Sands J (1970) Growth and development of the brain and spinal cord of the guinea pig. Brain Res 17(1):115–123

    Article  CAS  PubMed  Google Scholar 

  5. Kelleher MA, Palliser HK, Walker DW, Hirst JJ (2011) Sex-dependent effect of a low neurosteroid environment and intrauterine growth restriction on foetal guinea pig brain development. J Endocrinol 208(3):301–309

    CAS  PubMed  Google Scholar 

  6. Motzel SL, Wagner JE (1989) Diagnostic exercise: fetal death in guinea pigs. Lab Anim Sci 39(4):342–344

    CAS  PubMed  Google Scholar 

  7. Peaker M, Taylor E (1996) Sex ratio and litter size in the guinea-pig. J Reprod Fertil 108(1):63–67

    Article  CAS  PubMed  Google Scholar 

  8. Palliser HK, Kelleher MA, Welsh TN, Zakar T, Hirst JJ (2014) Mechanisms leading to increased risk of preterm birth in growth-restricted guinea pig pregnancies. Reprod Sci 21(2):269–276

    Article  PubMed  Google Scholar 

  9. Mesiano S, Wang Y, Norwitz ER (2011) Progesterone receptors in the human pregnancy uterus: do they hold the key to birth timing? Reprod Sci 18(1):6–19

    Article  CAS  PubMed  Google Scholar 

  10. Palliser HK, Zakar T, Symonds IM, Hirst JJ (2010) Progesterone receptor isoform expression in the guinea pig myometrium from normal and growth restricted pregnancies. Reprod Sci 17(8):776–782

    Article  CAS  PubMed  Google Scholar 

  11. Herd MB, Belelli D, Lambert JJ (2007) Neurosteroid modulation of synaptic and extrasynaptic GABA(A) receptors. Pharmacol Ther 116(1):20–34

    Article  CAS  PubMed  Google Scholar 

  12. Schumacher M, Baulieu EE (1995) Neurosteroids: synthesis and functions in the central and peripheral nervous systems. Ciba Found Symp 191:90–106, discussion 106–112

    CAS  PubMed  Google Scholar 

  13. Hirst JJ, Palliser HK, Yates DM, Yawno T, Walker DW (2008) Neurosteroids in the fetus and neonate: potential protective role in compromised pregnancies. Neurochem Int 52(4–5):602–610

    Article  CAS  PubMed  Google Scholar 

  14. Mellon SH, Griffin LD, Compagnone NA (2001) Biosynthesis and action of neurosteroids. Brain Res Brain Res Rev 37(1–3):3–12

    Article  CAS  PubMed  Google Scholar 

  15. Zwain IH, Yen SS (1999) Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 140(8):3843–3852

    Article  CAS  PubMed  Google Scholar 

  16. Kelleher MA, Hirst JJ, Palliser HK (2013) Changes in neuroactive steroid concentrations after preterm delivery in the Guinea pig. Reprod Sci 20(11):1365–1375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Nguyen PN, Billiards SS, Walker DW, Hirst JJ (2003) Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in the perinatal sheep. Pediatr Res 53(6):956–964

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen PN, Yan EB, Castillo-Melendez M, Walker DW, Hirst JJ (2004) Increased allopregnanolone levels in the fetal sheep brain following umbilical cord occlusion. J Physiol 560(Pt 2):593–602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yawno T, Yan EB, Hirst JJ, Walker DW (2011) Neuroactive steroids induce changes in fetal sheep behavior during normoxic and asphyxic states. Stress 14(1):13–22

    CAS  PubMed  Google Scholar 

  20. Wang JM, Liu L, Irwin RW, Chen S, Brinton RD (2008) Regenerative potential of allopregnanolone. Brain Res Rev 57(2):398–409

    Article  CAS  PubMed  Google Scholar 

  21. Ghoumari AM, Ibanez C, El-Etr M, Leclerc P, Eychenne B, O’Malley BW, Baulieu EE, Schumacher M (2003) Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J Neurochem 86(4):848–859

    Article  CAS  PubMed  Google Scholar 

  22. Schule C, Nothdurfter C, Rupprecht R (2014) The role of allopregnanolone in depression and anxiety. Prog Neurobiol 113:79–87

    Article  PubMed  Google Scholar 

  23. Darbra S, Modol L, Llido A, Casas C, Vallee M, Pallares M (2014) Neonatal allopregnanolone levels alteration: effects on behavior and role of the hippocampus. Prog Neurobiol 113:95–105

    Article  CAS  PubMed  Google Scholar 

  24. Yawno T, Yan EB, Walker DW, Hirst JJ (2007) Inhibition of neurosteroid synthesis increases asphyxia-induced brain injury in the late gestation fetal sheep. Neuroscience 146(4):1726–1733

    Article  CAS  PubMed  Google Scholar 

  25. Kaufmann P, Davidoff M (1977) The guinea-pig placenta. Adv Anat Embryol Cell Biol 53(2):5–91

    CAS  PubMed  Google Scholar 

  26. Tolcos M, Rees S (1997) Chronic placental insufficiency in the fetal guinea pig affects neurochemical and neuroglial development but not neuronal numbers in the brainstem: a new method for combined stereology and immunohistochemistry. J Comp Neurol 379(1):99–112

    Article  CAS  PubMed  Google Scholar 

  27. Tolcos M, Bateman E, O’Dowd R, Markwick R, Vrijsen K, Rehn A, Rees S (2011) Intrauterine growth restriction affects the maturation of myelin. Exp Neurol 232(1):53–65

    Article  CAS  PubMed  Google Scholar 

  28. Turner AJ, Trudinger BJ (2009) A modification of the uterine artery restriction technique in the guinea pig fetus produces asymmetrical ultrasound growth. Placenta 30(3):236–240

    Article  CAS  PubMed  Google Scholar 

  29. Heap RB, Deanesly R (1966) Progesterone in systemic blood and placentae of intact and ovariectomized pregnant guinea-pigs. J Endocrinol 34(4):417–423

    Article  CAS  PubMed  Google Scholar 

  30. Mackenzie R, Walker M, Armson A, Hannah ME (2006) Progesterone for the prevention of preterm birth among women at increased risk: a systematic review and meta-analysis of randomized controlled trials. Am J Obstet Gynecol 194(5):1234–1242

    Article  CAS  PubMed  Google Scholar 

  31. Ruiz RJ, Fullerton JT (1999) The measurement of stress in pregnancy. Nurs Health Sci 1(1):19–25

    Article  CAS  PubMed  Google Scholar 

  32. McKendry AA, Palliser HK, Yates DM, Walker DW, Hirst JJ (2010) The effect of betamethasone treatment on neuroactive steroid synthesis in a foetal Guinea pig model of growth restriction. J Neuroendocrinol 22(3):166–174

    Article  CAS  PubMed  Google Scholar 

  33. Van den Bergh BR, Mulder EJ, Mennes M, Glover V (2005) Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: links and possible mechanisms. A review. Neurosci Biobehav Rev 29(2):237–258

    Article  PubMed  Google Scholar 

  34. Van den Bergh BR, Marcoen A (2004) High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Dev 75(4):1085–1097

    Article  PubMed  Google Scholar 

  35. Loomans EM, van der Stelt O, van Eijsden M, Gemke RJ, Vrijkotte T, den Bergh BR (2011) Antenatal maternal anxiety is associated with problem behaviour at age five. Early Hum Dev 87(8):565–570

    Article  CAS  PubMed  Google Scholar 

  36. O’Connor TG, Heron J, Golding J, Beveridge M, Glover V (2002) Maternal antenatal anxiety and children’s behavioural/emotional problems at 4 years. Report from the Avon Longitudinal Study of Parents and Children. Br J Psychiatry 180:502–508

    Article  PubMed  Google Scholar 

  37. Buss C, Davis EP, Muftuler LT, Head K, Sandman CA (2010) High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinology 35(1):141–153

    Article  PubMed Central  PubMed  Google Scholar 

  38. Laplante DP, Brunet A, Schmitz N, Ciampi A, King S (2008) Project Ice Storm: prenatal maternal stress affects cognitive and linguistic functioning in 5 1/2-year-old children. J Am Acad Child Adolesc Psychiatry 47(9):1063–1072

    Article  PubMed  Google Scholar 

  39. King S, Mancini-Marie A, Brunet A, Walker E, Meaney MJ, Laplante DP (2009) Prenatal maternal stress from a natural disaster predicts dermatoglyphic asymmetry in humans. Dev Psychopathol 21(2):343–353

    Article  PubMed  Google Scholar 

  40. Emack J, Kostaki A, Walker C-D, Matthews SG (2008) Chronic maternal stress affects growth, behaviour and hypothalamo-pituitary-adrenal function in juvenile offspring. Horm Behav 54(4):514–520

    Article  CAS  PubMed  Google Scholar 

  41. Newnham JP, Jobe AH (2009) Should we be prescribing repeated courses of antenatal corticosteroids? Semin Fetal Neonatal Med 14(3):157–163

    Article  PubMed  Google Scholar 

  42. Quinlivan JA, Dunlop SA, Newnham JP, Evans SF, Beazley LD (1999) Repeated, but not single, maternal administration of corticosteroids delays myelination in the brain of fetal sheep. Prenat Neonatal Med 4:47–55

    CAS  Google Scholar 

  43. Dunlop SA, Archer MA, Quinlivan JA, Beazley LD, Newnham JP (1997) Repeated prenatal corticosteroids delay myelination in the ovine central nervous system. J Matern Fetal Med 6(6):309–313

    Article  CAS  PubMed  Google Scholar 

  44. Huang WL, Harper CG, Evans SF, Newnham JP, Dunlop SA (2001) Repeated prenatal corticosteroid administration delays myelination of the corpus callosum in fetal sheep. Int J Dev Neurosci 19(4):415–425

    Article  CAS  PubMed  Google Scholar 

  45. Seckl JR, Holmes MC (2007) Mechanisms of disease: glucocorticoids, their placental metabolism and fetal “programming” of adult pathophysiology. Nat Clin Pract Endocrinol Metab 3(6):479–488

    Article  CAS  PubMed  Google Scholar 

  46. McTernan CL, Draper N, Nicholson H, Chalder SM, Driver P, Hewison M, Kilby MD, Stewart PM (2001) Reduced placental 11beta-hydroxysteroid dehydrogenase type 2 mRNA levels in human pregnancies complicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab 86(10):4979–4983

    CAS  PubMed  Google Scholar 

  47. Matthews SG, Phillips DIW (2010) Minireview: transgenerational inheritance of the stress response: a new frontier in stress research. Endocrinology 151(1):7–13

    Article  CAS  PubMed  Google Scholar 

  48. Kapoor A, Petropoulos S, Matthews SG (2008) Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res Rev 57(2):586–595

    Article  CAS  PubMed  Google Scholar 

  49. Kapoor A, Matthews SG (2005) Short periods of prenatal stress affect growth, behaviour and hypothalamo-pituitary-adrenal axis activity in male guinea pig offspring. J Physiol 566(Pt 3):967–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Bennett GA, Palliser HK, Saxby B, Walker DW, Hirst JJ (2013) Effects of prenatal stress on fetal neurodevelopment and responses to maternal neurosteroid treatment in Guinea pigs. Dev Neurosci 35(5):416–426

    Article  CAS  PubMed  Google Scholar 

  51. Kapoor A, Dunn E, Kostaki A, Andrews MH, Matthews SG (2006) Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. J Physiol 572(Pt 1):31–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Dauprat P, Monin G, Dalle M, Delost P (1984) The effects of psychosomatic stress at the end of pregnancy on maternal and fetal plasma cortisol levels and liver glycogen in guinea-pigs. Reprod Nutr Dev 24(1):45–51

    Article  CAS  PubMed  Google Scholar 

  53. Kapoor A, Matthews SG (2008) Prenatal stress modifies behavior and hypothalamic-pituitary-adrenal function in female guinea pig offspring: effects of timing of prenatal stress and stage of reproductive cycle. Endocrinology 149(12):6406–6415

    Article  CAS  PubMed  Google Scholar 

  54. Emack J, Matthews SG (2011) Effects of chronic maternal stress on hypothalamo-pituitary-adrenal (HPA) function and behavior: no reversal by environmental enrichment. Horm Behav 60(5):589–598

    Article  CAS  PubMed  Google Scholar 

  55. Kapoor A, Leen J, Matthews SG (2008) Molecular regulation of the hypothalamic-pituitary-adrenal axis in adult male guinea pigs after prenatal stress at different stages of gestation. J Physiol 586(Pt 17):4317–4326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Palliser HK, Bennett GA, Walker DW, Hirst JJ (2014) Prenatal stress causes sex specific persistent reductions in myelination and reactive astrocytes in adolescent guinea pig offspring, International Congress on Neuroendocrinology, Sydnes, p A371

    Google Scholar 

  57. Paris JJ, Frye CA (2011) Juvenile offspring of rats exposed to restraint stress in late gestation have impaired cognitive performance and dysregulated progestogen formation. Stress 14(1):23–32

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Wirth MM (2011) Beyond the HPA axis: progesterone-derived neuroactive steroids in human stress and emotion. Front Endocrinol 2:1–14

    Article  Google Scholar 

  59. Yawno T, Mortale M, Sutherland AE, Jenkin G, Wallace EM, Walker DW, Miller SL (2014) The effects of betamethasone on allopregnanolone concentrations and brain development in preterm fetal sheep. Neuropharmacology 85:342–348

    Article  CAS  PubMed  Google Scholar 

  60. Berry NM, Robinson MJ, Bryan J, Buckley JD, Murphy KJ, Howe PR (2011) Acute effects of an Avena sativa herb extract on responses to the Stroop Color-Word test. J Altern Complement Med 17(7):635–637

    Article  PubMed  Google Scholar 

  61. Robinson M, Mattes E, Oddy WH, Pennell CE, van Eekelen A, McLean NJ, Jacoby P, Li J, de Klerk NH, Zubrick SR, Stanley FJ, Newnham JP (2011) Prenatal stress and risk of behavioral morbidity from age 2 to 14 years: The influence of the number, type, and timing of stressful life events-. Dev Psychopathol 23:507–520

    Article  PubMed  Google Scholar 

  62. Gibb BE, Chelminski I, Zimmerman M (2007) Childhood emotional, physical, and sexual abuse, and diagnoses of depressive and anxiety disorders in adult psychiatric outpatients. Depress Anxiety 24(4):256–263

    Article  PubMed  Google Scholar 

  63. Meaney MJ, Szyf M, Seckl JR (2007) Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 13(7):269–277

    Article  CAS  PubMed  Google Scholar 

  64. Champagne DL, Bagot RC, van Hasselt F, Ramakers G, Meaney MJ, de Kloet ER, Joels M, Krugers H (2008) Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J Neurosci 28(23):6037–6045

    Article  CAS  PubMed  Google Scholar 

  65. Bagot RC, Zhang TY, Wen X, Nguyen TT, Nguyen HB, Diorio J, Wong TP, Meaney MJ (2012) Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc Natl Acad Sci U S A 109(Suppl 2):17200–17207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Tyzio R, Holmes GL, Ben-Ari Y, Khazipov R (2007) Timing of the developmental switch in GABA(A) mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings. [Erratum appears in Epilepsia. 2007;48(12):2380], Epilepsia 48(Suppl 5):96–105

    Google Scholar 

  67. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3(9):728–739

    Article  CAS  PubMed  Google Scholar 

  68. Coleman HJ, Parkington HC (2013) The GABAA excitation-to-inhibition switch in the hippocampus of the perinatal guinea pig. Fetal Neonatal Pysiol Soc Proc Abstract 40

    Google Scholar 

  69. Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18(5):467–486

    Article  PubMed  Google Scholar 

  70. Matthews SG (2007) Foetal experience: lifelong consequences. J Neuroendocrinol 19(1):73–74

    Article  PubMed  Google Scholar 

  71. Crossley KJ, Nitsos I, Walker DW, Lawrence AJ, Beart PM, Hirst JJ (2003) Steroid-sensitive GABAA receptors in the fetal sheep brain. Neuropharmacology 45(4):461–472

    Article  CAS  PubMed  Google Scholar 

  72. Walker DW, Hirst JJ, Bennett GA, Cumberland AL, Shaw JC, Palliser HK (2015) Loss of steroid-mediated neuroprotection following stress in fetal life. 7th International Meeting on Steroids and the Nervous System, Proceedings pA6

    Google Scholar 

Download references

Acknowledgements

This work was funded by the NHMRC (grant numbers 1003517 and 1044846).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan J. Hirst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Palliser, H.K., Bennett, G.A., Kelleher, M.A., Cumberland, A.L., Walker, D.W., Hirst, J.J. (2016). Models of Perinatal Compromises in the Guinea Pig: Their Use in Showing the Role of Neurosteroids in Pregnancy and the Newborn. In: Walker, D. (eds) Prenatal and Postnatal Determinants of Development. Neuromethods, vol 109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3014-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3014-2_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3013-5

  • Online ISBN: 978-1-4939-3014-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics