Skip to main content

Immunoblotting with Peptide Antibodies: Differential Immunoreactivities Caused by Certain Amino Acid Substitutions in a Short Peptide and Possible Effects of Differential Refolding of the Peptide on a Nitrocellulose or PVDF Membrane

  • Protocol
Book cover Peptide Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1348))

Abstract

Immunodetection using antibodies, e.g., Western blotting, is generally utilized to measure the amount of a certain protein in a protein mixture. For valid interpretation of results observed by immunodetection, strict attention must be paid to the factors affecting the immunoreactivities of the antibodies. We here describe the step-by-step procedures to demonstrate that substitution of certain amino acids in a peptide can cause remarkable differences in its immunoreactivity with antibodies against epitope tags in the immobilized peptide. Refolding of the peptide on the membrane in a way that masks the epitope to different degrees was the possible reason for their distinct immunoreactivities with the antibodies. The results in this chapter suggest that we need to interpret carefully the experimental results involving immunodetection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gershoni JM, Palade GE (1983) Protein blotting: principles and applications. Anal Biochem 131:1–15

    Article  CAS  PubMed  Google Scholar 

  2. Klinz FJ (1994) GTP-blot analysis of small GTP-binding proteins. The C-terminus is involved in renaturation of blotted proteins. Eur J Biochem 225:99–105

    Article  CAS  PubMed  Google Scholar 

  3. Karlsson-Borgå A, Rolfsen W (1991) Methodological considerations when using nitrocellulose immunoblotting from polyacrylamide gels to study the mould allergens Aspergillus fumigatus and Alternaria alternata. J Immunol Methods 136:91–102

    Article  PubMed  Google Scholar 

  4. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  CAS  PubMed  Google Scholar 

  5. Matsuo T, Yamamoto T, Katsuda C, Niiyama K, Yamamoto A, Yamazaki N, Ohkura K, Kataoka M, Shinohara Y (2009) Substitution of certain amino acids in a short peptide causes a significant difference in their immunoreactivities with antibodies against different epitopes: evidence for possible folding of the peptide on a nitrocellulose or PVDF membrane. Biologicals 37:44–47

    Article  CAS  PubMed  Google Scholar 

  6. Dunn SD (1986) Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Anal Biochem 157:144–153

    Article  CAS  PubMed  Google Scholar 

  7. Van Oss CJ, Good RJ, Chaudhury MK (1987) Mechanism of DNA (Southern) and protein (Western) blotting on cellulose nitrate and other membranes. J Chromatogr 391:53–65

    Article  PubMed  Google Scholar 

  8. Hoffman WL, Jump AA, Kelly PJ, Ruggles AO (1991) Binding of antibodies and other proteins to nitrocellulose in acidic, basic, and chaotropic buffers. Anal Biochem 198:112–118

    Article  CAS  PubMed  Google Scholar 

  9. Ridder AN, Kuhn A, Killian JA, de Kruijff B (2001) Anionic lipids stimulate Sec-independent insertion of a membrane protein lacking charged amino acid side chains. EMBO Rep 2:403–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takenori Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yamamoto, T. et al. (2015). Immunoblotting with Peptide Antibodies: Differential Immunoreactivities Caused by Certain Amino Acid Substitutions in a Short Peptide and Possible Effects of Differential Refolding of the Peptide on a Nitrocellulose or PVDF Membrane. In: Houen, G. (eds) Peptide Antibodies. Methods in Molecular Biology, vol 1348. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2999-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2999-3_26

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2998-6

  • Online ISBN: 978-1-4939-2999-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics