Skip to main content

Thioredoxin-Displayed Multipeptide Immunogens

  • Protocol
Book cover Peptide Antibodies

Abstract

Fusion to carrier proteins is an effective strategy for stabilizing and providing immunogenicity to peptide epitopes. This is commonly achieved by cross-linking of chemically synthesized peptides to carrier proteins. An alternative approach is internal grafting of selected peptide epitopes to a scaffold protein via double stranded-oligonucleotide insertion or gene synthesis, followed by recombinant expression of the resulting chimeric polypeptide. The scaffold protein should confer immunogenicity to the stabilized and structurally constrained peptide, but also afford easy production of the antigen in recombinant form. A macromolecular scaffold that meets the above criteria is the redox protein thioredoxin, especially bacterial thioredoxin. Here we describe our current methodology for internal grafting of selected peptide epitopes to thioredoxin as tandemly arranged multipeptide repeats (“Thioredoxin Displayed Multipeptide Immunogens”), bacterial expression and purification of the recombinant thioredoxin–multipeptide fusion proteins and their use as antigens for the production of anti-peptide antibodies for prophylactic vaccine as well as diagnostic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards RJ, Singleton AM, Murray BP, Davies DS, Boobis AR (1995) Short synthetic peptides exploited for reliable and specific targeting of antibodies to the C-termini of cytochrome P450 enzymes. Biochem Pharmacol 49:39–47

    Article  CAS  PubMed  Google Scholar 

  2. Angeletti RH (1999) Design of useful peptide antigens. J Biomol Tech 10:2–10

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Trier NH, Hansen PR, Vedeler CA, Somnier FE, Houen G (2012) Identification of continuous epitopes of HuD antibodies related to paraneoplastic diseases/small cell lung cancer. J Neuroimmunol 243:25–33

    Article  CAS  PubMed  Google Scholar 

  4. Olive C, Toth I, Jackson D (2001) Technological advances in antigen delivery and synthetic peptide vaccine developmental strategies. Mini Rev Med Chem 1:429–438

    Article  CAS  PubMed  Google Scholar 

  5. Tam JP (1988) Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A 85:5409–5413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Posnett DN, McGrath H, Tam JP (1988) A novel method for producing anti-peptide antibodies. Production of site-specific antibodies to the T cell antigen receptor beta-chain. J Biol Chem 263:1719–1725

    CAS  PubMed  Google Scholar 

  7. Niederhafner P, Sebestik J, Jezek J (2005) Peptide dendrimers. J Pept Sci 11:757–788

    Article  CAS  PubMed  Google Scholar 

  8. Zaman M, Toth I (2013) Immunostimulation by synthetic lipopeptide-based vaccine candidates: structure-activity relationships. Front Immunol 4:318

    Article  PubMed Central  PubMed  Google Scholar 

  9. Chuan YP, Wibowo N, Connors NK, Wu Y, Hughes FK, Batzloff MR, Lua LH, Middelberg AP (2014) Microbially synthesized modular virus-like particles and capsomeres displaying group A streptococcus hypervariable antigenic determinants. Biotechnol Bioeng 111:1062–1070

    Article  CAS  PubMed  Google Scholar 

  10. Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, do Carmo Caldeira J, Chackerian B (2008) Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol 380:252–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Branco LM, Grove JN, Geske FJ, Boisen ML, Muncy IJ, Magliato SA, Henderson LA, Schoepp RJ, Cashman KA, Hensley LE, Garry RF (2010) Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virol J 7:279

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ogun SA, Dumon-Seignovert L, Marchand JB, Holder AA, Hill F (2008) The oligomerization domain of C4-binding protein (C4bp) acts as an adjuvant, and the fusion protein comprised of the 19-kilodalton merozoite surface protein 1 fused with the murine C4bp domain protects mice against malaria. Infect Immun 76:3817–3823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Rudra JS, Tian YF, Jung JP, Collier JH (2010) A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci U S A 107:622–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Liu J, Liu J, Xu H, Zhang Y, Chu L, Liu Q, Song N, Yang C (2014) Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomed 9:197–207

    Google Scholar 

  15. Kovacs-Nolan J, Mine Y (2006) Tandem copies of a human rotavirus VP8 epitope can induce specific neutralizing antibodies in BALB/c mice. Biochim Biophys Acta 1760:1884–1893

    Article  CAS  PubMed  Google Scholar 

  16. Krause S, Schmoldt HU, Wentzel A, Ballmaier M, Friedrich K, Kolmar H (2007) Grafting of thrombopoietin-mimetic peptides into cystine knot miniproteins yields high-affinity thrombopoietin antagonists and agonists. FEBS J 274:86–95

    Article  CAS  PubMed  Google Scholar 

  17. Backstrom M, Lebens M, Schodel F, Holmgren J (1994) Insertion of a HIV-1-neutralizing epitope in a surface-exposed internal region of the cholera toxin B-subunit. Gene 149:211–217

    Article  CAS  PubMed  Google Scholar 

  18. Guo L, Wang J, Qian S, Yan X, Chen R, Meng G (2000) Construction and structural modeling of a single-chain Fv-asparaginase fusion protein resistant to proteolysis. Biotechnol Bioeng 70:456–463

    Article  CAS  PubMed  Google Scholar 

  19. Jacquet A, Daminet V, Haumont M, Garcia L, Chaudoir S, Bollen A, Biemans R (1999) Expression of a recombinant Toxoplasma gondii ROP2 fragment as a fusion protein in bacteria circumvents insolubility and proteolytic degradation. Protein Expr Purif 17:392–400

    Article  CAS  PubMed  Google Scholar 

  20. Ofek G, Guenaga FJ, Schief WR, Skinner J, Baker D, Wyatt R, Kwong PD (2010) Elicitation of structure-specific antibodies by epitope scaffolds. Proc Natl Acad Sci U S A 107:17880–17887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Van Braeckel-Budimir N, Haijema BJ, Leenhouts K (2013) Bacterium-like particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications. Front Immunol 4:282

    PubMed Central  PubMed  Google Scholar 

  22. del Guercio MF, Alexander J, Kubo RT, Arrhenius T, Maewal A, Appella E, Hoffman SL, Jones T, Valmori D, Sakaguchi K, Grey HM, Sette A (1997) Potent immunogenic short linear peptide constructs composed of B cell epitopes and Pan DR T helper epitopes (PADRE) for antibody responses in vivo. Vaccine 15:441–448

    Article  PubMed  Google Scholar 

  23. Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271:348–350

    Article  CAS  PubMed  Google Scholar 

  24. Carayanniotis G, Barber BH (1987) Adjuvant-free IgG responses induced with antigen coupled to antibodies against class II MHC. Nature 327:59–61

    Article  CAS  PubMed  Google Scholar 

  25. Hosse RJ, Rothe A, Power BE (2006) A new generation of protein display scaffolds for molecular recognition. Protein Sci 15:14–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Binz HK, Amstutz P, Pluckthun A (2005) Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23:1257–1268

    Article  CAS  PubMed  Google Scholar 

  27. Weidle UH, Auer J, Brinkmann U, Georges G, Tiefenthaler G (2013) The emerging role of new protein scaffold-based agents for treatment of cancer. Cancer Genomics Proteomics 10:155–168

    CAS  PubMed  Google Scholar 

  28. Moretto N, Bolchi A, Rivetti C, Imbimbo BP, Villetti G, Pietrini V, Polonelli L, Del Signore S, Smith KM, Ferrante RJ, Ottonello S (2007) Conformation-sensitive antibodies against alzheimer amyloid-beta by immunization with a thioredoxin-constrained B-cell epitope peptide. J Biol Chem 282:11436–11445

    Article  CAS  PubMed  Google Scholar 

  29. Rubio I, Bolchi A, Moretto N, Canali E, Gissmann L, Tommasino M, Muller M, Ottonello S (2009) Potent anti-HPV immune responses induced by tandem repeats of the HPV16 L2 (20–38) peptide displayed on bacterial thioredoxin. Vaccine 27:1949–1956

    Article  CAS  PubMed  Google Scholar 

  30. Seitz H, Canali E, Ribeiro-Muller L, Palfi A, Bolchi A, Tommasino M, Ottonello S, Muller M (2014) A three component mix of thioredoxin-L2 antigens elicits broadly neutralizing responses against oncogenic human papillomaviruses. Vaccine 32:2610–2617

    Article  CAS  PubMed  Google Scholar 

  31. LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E coli cytoplasm. Biotechnology 11:187–193

    Article  CAS  PubMed  Google Scholar 

  32. Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R (1996) Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380:548–550

    Article  CAS  PubMed  Google Scholar 

  33. Klevenz B, Butz K, Hoppe-Seyler F (2002) Peptide aptamers: exchange of the thioredoxin-A scaffold by alternative platform proteins and its influence on target protein binding. Cell Mol Life Sci 59:1993–1998

    Article  CAS  PubMed  Google Scholar 

  34. Nieto K, Weghofer M, Sehr P, Ritter M, Sedlmeier S, Karanam B, Seitz H, Muller M, Kellner M, Horer M, Michaelis U, Roden RB, Gissmann L, Kleinschmidt JA (2012) Development of AAVLP(HPV16/31 L2) particles as broadly protective HPV vaccine candidate. PLoS One 7, e39741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Broekhuijsen MP, van Rijn JM, Blom AJ, Pouwels PH, Enger-Valk BE, Brown F, Francis MJ (1987) Fusion proteins with multiple copies of the major antigenic determinant of foot-and-mouth disease virus protect both the natural host and laboratory animals. J Gen Virol 68(Pt 12):3137–3143

    Article  PubMed  Google Scholar 

  36. Enea V, Arnot D, Schmidt EC, Cochrane A, Gwadz R, Nussenzweig RS (1984) Circumsporozoite gene of plasmodium cynomolgi (Gombak):cDNA cloning and expression of the repetitive circumsporozoite epitope. Proc Natl Acad Sci U S A 81:7520–7524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Schuman JT, Grinstead JS, Apostolopoulos V, Campbell AP (2005) Structural and dynamic consequences of increasing repeats in a MUC1 peptide tumor antigen. Biopolymers 77:107–120

    Article  CAS  PubMed  Google Scholar 

  38. Liu W, Chen YH (2005) High epitope density in a single protein molecule significantly enhances antigenicity as well as immunogenicity: a novel strategy for modern vaccine development and a preliminary investigation about B cell discrimination of monomeric proteins. Eur J Immunol 35:505–514

    Article  CAS  PubMed  Google Scholar 

  39. Seitz H, Dantheny T, Burkart F, Ottonello S, Muller M (2013) Influence of oxidation and multimerization on the immunogenicity of a thioredoxin-l2 prophylactic papillomavirus vaccine. Clin Vaccine Immunol 20:1061–1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Canali E, Bolchi A, Spagnoli G, Seitz H, Rubio I, Pertinhez TA, Muller M, Ottonello S (2014) A high-performance thioredoxin-based scaffold for peptide immunogen construction: proof-of-concept testing with a human papillomavirus epitope. Sci Rep 4:4729

    Article  PubMed Central  PubMed  Google Scholar 

  41. Jegerlehner A, Wiesel M, Dietmeier K, Zabel F, Gatto D, Saudan P, Bachmann MF. Carrier induced epitopic suppression of antibody responses induced by virus-like particles is a dynamic phenomenon caused by carrier-specific antibodies. Vaccine 28:5503–5512

    Google Scholar 

  42. Rubio I, Seitz H, Canali E, Sehr P, Bolchi A, Tommasino M, Ottonello S, Muller M (2011) The N-terminal region of the human papillomavirus L2 protein contains overlapping binding sites for neutralizing, cross-neutralizing and non-neutralizing antibodies. Virology 409:348–359

    Article  CAS  PubMed  Google Scholar 

  43. Caldeira S, Zehbe I, Accardi R, Malanchi I, Dong W, Giarre M, de Villiers EM, Filotico R, Boukamp P, Tommasino M (2003) The E6 and E7 proteins of the cutaneous human papillomavirus type 38 display transforming properties. J Virol 77:2195–2206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Viarisio D, Mueller-Decker K, Kloz U, Aengeneyndt B, Kopp-Schneider A, Grone HJ, Gheit T, Flechtenmacher C, Gissmann L, Tommasino M. E6 and E7 from beta HPV38 cooperate with ultraviolet light in the development of actinic keratosis-like lesions and squamous cell carcinoma in mice. PLoS Pathog 7:e1002125

    Google Scholar 

  45. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21:243–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33:423–428

    Article  CAS  PubMed  Google Scholar 

  47. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting flexible length linear B-cell epitopes. Comput Syst Bioinformatics Conf 7:121–132

    Article  PubMed Central  PubMed  Google Scholar 

  48. Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48

    Article  CAS  PubMed  Google Scholar 

  49. Saha S, Raghava G (2004) BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. Lect Notes Comput Sci 3239:197–204

    Article  Google Scholar 

  50. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

    Article  PubMed Central  PubMed  Google Scholar 

  51. Gao J, Faraggi E, Zhou Y, Ruan J, Kurgan L (2012) BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One 7, e40104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Puigbo P, Guzman E, Romeu A, Garcia-Vallve S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131

    Article  PubMed Central  PubMed  Google Scholar 

  53. Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  CAS  PubMed  Google Scholar 

  54. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Liu S, Tobias R, McClure S, Styba G, Shi Q, Jackowski G (1997) Removal of endotoxin from recombinant protein preparations. Clin Biochem 30:455–463

    Article  CAS  PubMed  Google Scholar 

  56. Dieci G, Bottarelli L, Ballabeni A, Ottonello S (2000) tRNA-assisted overproduction of eukaryotic ribosomal proteins. Protein Expr Purif 18:346–354

    Article  CAS  PubMed  Google Scholar 

  57. Ayyar BV, Arora S, Murphy C, O’Kennedy R (2012) Affinity chromatography as a tool for antibody purification. Methods 56:116–129

    Article  CAS  PubMed  Google Scholar 

  58. Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M (2012) Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant beta-glucosidase from the termite Nasutitermes takasagoensis. Appl Environ Microbiol 78:4288–4293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Italian Association for Cancer Research (AIRC, grant IG 12956) and from the Regione Emilia Romagna, Ricerca Regione-Università 2010–2012, Strategic Programme “A tailored approach to the immune-monitoring and clinical management of viral and autoimmune diseases” to S.O. We thank Arturo Roberto Viscomi (GSK, San Polo di Torrile, Parma, Italy) for precious and highly competent help at an early stage of this work. E.C. was supported by a postdoctoral fellowship from AIRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Ottonello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bolchi, A. et al. (2015). Thioredoxin-Displayed Multipeptide Immunogens. In: Houen, G. (eds) Peptide Antibodies. Methods in Molecular Biology, vol 1348. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2999-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2999-3_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2998-6

  • Online ISBN: 978-1-4939-2999-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics