Skip to main content

Production and Screening of Monoclonal Peptide Antibodies

  • Protocol
Peptide Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1348))

Abstract

Hybridoma technology is a remarkable and indispensable tool for generating high-quality monoclonal antibodies. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents, but have also emerged as the most rapidly expanding class of therapeutic biologicals. In this chapter, an overview of hybridoma technology and the laboratory procedures used routinely for hybridoma production and antibody screening are presented, including characterization of peptide antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhidova EV, Volkova TD, Koroev DO, Kim I, Filatova MP, Vladimirova NM, Karmakova TA, Zavalishina LE, Andreeva I, Vol’pina OM (2010) Antibodies to synthetic peptides for the detection of survivin in tumor tissues. Bioorg Khim 36:178–186

    CAS  PubMed  Google Scholar 

  2. Armstrong A, Hildreth JE, Amzel LM (2013) Structural and thermodynamic insights into the recognition of native proteins by anti-peptide antibodies. J Mol Biol 425:2027–2038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Nakagawa M, Ohmido N, Ishikawa K, Uchiyama S, Fukui K, Azuma T (2008) Anti-peptide antibodies for examining the conformation, molecular assembly and localization of an intracellular protein, ribosomal protein S6, in vivo. J Biochem 143:325–332

    Article  CAS  PubMed  Google Scholar 

  4. Schulz S, Rocken C, Schulz S (2006) Immunocytochemical localisation of plasma membrane GHRH receptors in human tumours using a novel anti-peptide antibody. Eur J Cancer 42:2390–2396

    Article  CAS  PubMed  Google Scholar 

  5. Trier NH, Hansen PR, Houen G (2012) Production and characterization of peptide antibodies. Methods 56:136–144

    Article  CAS  PubMed  Google Scholar 

  6. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  7. Kao DJ, Hodges RS (2009) Advantages of a synthetic peptide immunogen over a protein immunogen in the development of an anti-pilus vaccine for Pseudomonas aeruginosa. Chem Biol Drug Des 74:33–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Moisa AA, Kolesanova EF (2011) Synthetic peptide vaccines. Biomed Khim 57:14–30

    Article  CAS  PubMed  Google Scholar 

  9. Skovbjerg H, Koch C, Anthonsen D, Sjostrom H (2004) Deamidation and cross-linking of gliadin peptides by transglutaminases and the relation to celiac disease. Biochim Biophys Acta 1690:220–230

    Article  CAS  PubMed  Google Scholar 

  10. Hancock DC, O’Reilly NJ (2005) Synthetic peptides as antigens for antibody production. Methods Mol Biol 295:13–26

    CAS  PubMed  Google Scholar 

  11. Lateef SS, Gupta S, Jayathilaka LP, Krishnanchettiar S, Huang JS, Lee BS (2007) An improved protocol for coupling synthetic peptides to carrier proteins for antibody production using DMF to solubilize peptides. J Biomol Tech 18:173–176

    PubMed Central  PubMed  Google Scholar 

  12. Lee BS, Huang JS, Jayathilaka GD, Lateef SS, Gupta S (2010) Production of antipeptide antibodies. Methods Mol Biol 657:93–108

    Article  CAS  PubMed  Google Scholar 

  13. Hancock DC, Evan GI (1998) Production and characterization of antibodies against synthetic peptides. Methods Mol Biol 80:15–22

    Article  CAS  PubMed  Google Scholar 

  14. Maleki LA, Majidi J, Baradaran B, Abdolalizadeh J, Akbari AM (2013) Production and characterization of murine monoclonal antibody against synthetic peptide of CD34. Hum Antibodies 22:1–8

    CAS  PubMed  Google Scholar 

  15. Holm BE, Bergmann AC, Hansen PR, Koch C, Houen G, Trier NH (2015) Antibodies with specificity for native and denatured forms of ovalbumin differ in reactivity between enzyme-linked immunosorbent assays. APMIS 123(2):136–145. doi:10.1111/apm.12329

    Article  CAS  PubMed  Google Scholar 

  16. Koch C, Jensen SS, Oster A, Houen G (1996) A comparison of the immunogenicity of the native and denatured forms of a protein. APMIS 104:115–125

    Article  CAS  PubMed  Google Scholar 

  17. Koch C (1993) Monoklonale antistoffer. In: Kielberg V, Brünner N, Briand P (eds) Celledyrkning—En praktisk håndbog i dyrkning af mammale celler’. Foreningen af Danske Lægestuderendes Forlag, København, pp 201–210

    Google Scholar 

  18. Grimaldi CM, French DL (1995) Monoclonal Antibodies by Somatic Cell Fusion. ILAR J 37:125–132

    Article  PubMed  Google Scholar 

  19. Helling F, Shang A, Calves M, Zhang S, Ren S, Yu RK, Oettgen HF, Livingston PO (1994) GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res 54:197–203

    CAS  PubMed  Google Scholar 

  20. Khalil IF, Alifrangis M, Recke C, Hoegberg LC, Ronn A, Bygbjerg IC, Koch C (2011) Development of ELISA-based methods to measure the anti-malarial drug chloroquine in plasma and in pharmaceutical formulations. Malar J 10:249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Degen WG, Jansen T, Schijns VE (2003) Vaccine adjuvant technology: from mechanistic concepts to practical applications. Expert Rev Vaccines 2:327–335

    Article  CAS  PubMed  Google Scholar 

  22. Guven E, Duus K, Laursen I, Hojrup P, Houen G (2013) Aluminum hydroxide adjuvant differentially activates the three complement pathways with major involvement of the alternative pathway. PLoS One 8, e74445. doi:10.1371/journal.pone.0074445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82:488–496

    Article  CAS  PubMed  Google Scholar 

  24. Freund J, Casals J, Hosmer EP (1937) Sensitization and antibody formation after injection of tubercle bacili and paraffin oil. Proc Soc Exp Biol Med 37:509–513

    Article  CAS  Google Scholar 

  25. Glenny AT, Pope CG, Waddington H, Wallance U (1926) The antigenic value of toxoid precipitated by potassium alum. J Pathol Becteriol 29:38–39

    Google Scholar 

  26. Fyfe L, Maingay J, Robinson AC, Howie SE (1991) Murine immune response to HIV-1 p24 core protein following subcutaneous, intraperitoneal and intravenous immunization. Immunology 74:467–472

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Ghimire TR, Benson RA, Garside P, Brewer JM (2012) Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol Lett 147:55–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Budimir N, de Haan A, Meijerhof T, Gostick E, Price DA, Huckriede A, Wilschut J (2013) Heterosubtypic cross-protection induced by whole inactivated influenza virus vaccine in mice: influence of the route of vaccine administration. Influenza Other Respir Viruses 7:1202–1209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mohanan D, Slutter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, Kundig TM, Gander B, Johansen P (2010) Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems. J Control Release 147:342–349

    Article  CAS  PubMed  Google Scholar 

  30. Harlow E, Lane D (1988) Monoclonal antibodies. In: Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New York, pp 139–244

    Google Scholar 

  31. Kanduser M, Usaj M (2014) Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines. Expert Opin Drug Deliv 11:1885–1898

    Article  CAS  PubMed  Google Scholar 

  32. Sugasawara RJ, Cahoon BE, Karu AE (1985) The influence of murine macrophage-conditioned medium on cloning efficiency, antibody synthesis, and growth rate of hybridomas. J Immunol Methods 79:263–275

    Article  CAS  PubMed  Google Scholar 

  33. Walker KZ, Gibson J, Axiak SM, Prentice RL (1986) Potentiation of hybridoma production by the use of mouse fibroblast conditioned media. J Immunol Methods 88:75–81

    Article  CAS  PubMed  Google Scholar 

  34. Schwelberger HG, Feurle J, Houen G (2013) New tools for studying old questions: antibodies for human diamine oxidase. J Neural Transm 120:1019–1026

    Article  CAS  PubMed  Google Scholar 

  35. Jefferis R, Reimer CB, Skvaril F, de Lange G, Ling NR, Lowe J, Walker MR, Phillips DJ, Aloisio CH, Wells TW (1985) Evaluation of monoclonal antibodies having specificity for human IgG sub-classes: results of an IUIS/WHO collaborative study. Immunol Lett 10:223–252

    Article  CAS  PubMed  Google Scholar 

  36. Nelson PN, Fletcher SM, MacDonald D, Goodall DM, Jefferis R (1991) Assay restriction profiles of three monoclonal antibodies recognizing the G3m(u) allotype. Development of an allotype specific assay. J Immunol Methods 138:57–64

    Article  CAS  PubMed  Google Scholar 

  37. Muller S, Plaue S, Couppez M, Van Regenmortel MH (1986) Comparison of different methods for localizing antigenic regions in histone H2A. Mol Immunol 23:593–601

    Article  CAS  PubMed  Google Scholar 

  38. Van Regenmortel MH (1987) Protein structure and antigenicity. Int J Rad Appl Instrum B 14(4):277–280

    Article  PubMed  Google Scholar 

  39. Hornbeck P, Fleisher TA, Papadopoulos NM (2001) Isotype determination of antibodies. Curr Protoc Immunol Chapter 2, Unit. 2.2

    Google Scholar 

  40. Bull H, Choy M, Manyonda I, Brown CA, Waldron EE, Holmes SD, Booth JC, Nelson PN (1999) Reactivity and assay restriction profiles of monoclonal and polyclonal antibodies to acid phosphatases: a preliminary study. Immunol Lett 70:143–149

    Article  CAS  PubMed  Google Scholar 

  41. Amrutkar SD, Trier NH, Hansen PR, Houen G (2012) Fine mapping of a monoclonal antibody to the N-Methyl D-aspartate receptor reveals a short linear epitope. Biopolymers 98:567–575

    Article  CAS  PubMed  Google Scholar 

  42. Welner S, Trier NH, Houen G, Hansen PR (2013) Identification and mapping of a linear epitope of centromere protein F using monoclonal antibodies. J Pept Sci 19:95–101

    Article  CAS  PubMed  Google Scholar 

  43. Petersen NH, Hansen PR, Houen G (2011) Fast and efficient characterization of an anti-gliadin monoclonal antibody epitope related to celiac disease using resin-bound peptides. J Immunol Methods 365:174–182

    Article  CAS  PubMed  Google Scholar 

  44. Gibbs E, Oger J (2008) A biosensor-based characterization of the affinity maturation of the immune response against interferon-beta and correlations with neutralizing antibodies in treated multiple sclerosis patients. J Interferon Cytokine Res 28:713–723

    Article  CAS  PubMed  Google Scholar 

  45. Stubenrauch K, Wessels U, Vogel R, Schleypen J (2009) Evaluation of a biosensor immunoassay for simultaneous characterization of isotype and binding region of human anti-tocilizumab antibodies with control by surrogate standards. Anal Biochem 390:189–196

    Article  CAS  PubMed  Google Scholar 

  46. Wegner GJ, Lee HJ, Corn RM (2002) Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Anal Chem 74:5161–5168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Friis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Trier, N.H., Mortensen, A., Schiolborg, A., Friis, T. (2015). Production and Screening of Monoclonal Peptide Antibodies. In: Houen, G. (eds) Peptide Antibodies. Methods in Molecular Biology, vol 1348. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2999-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2999-3_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2998-6

  • Online ISBN: 978-1-4939-2999-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics