Skip to main content

Peptide Antibodies: Past, Present, and Future

  • Protocol
Peptide Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1348))

Abstract

Peptide antibodies recognize epitopes with amino acid residues adjacent in sequence (“linear” epitopes). Such antibodies can be made to virtually any sequence and have been immensely important in all areas of molecular biology and diagnostics due to their versatility and to the rapid growth in protein sequence information. Today, peptide antibodies can be routinely and rapidly made to large numbers of peptides, including peptides with posttranslationally modified residues, and are used for immunoblotting, immunocytochemistry, immunohistochemistry, and immunoassays. In the future, peptide antibodies will continue to be immensely important for molecular biology, TCR- and MHC-like peptide antibodies may be produced routinely, peptide antibodies with predetermined conformational specificities may be designed, and peptide-based vaccines may become part of vaccination programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sela M, Schechter B, Schechter I, Borek F (1967) Antibodies to sequential and conformational determinants. Cold Spring Harbor Symp Quant Biol 32:537–545

    Article  CAS  Google Scholar 

  2. Amit AG, Mariuzza RA, Phillips SE, Poljak RJ (1986) Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science 233:747–753

    Article  CAS  PubMed  Google Scholar 

  3. Colman PM, Laver WG, Varghese JN, Baker AT, Tulloch PA, Air GM, Webster RG (1987) Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. Nature 326:358–363

    Article  CAS  PubMed  Google Scholar 

  4. Sheriff S, Silverton EW, Padlan EA, Cohen GH, Smith-Gill SJ, Finzel BC, Davies DR (1987) Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci U S A 84:8075–8079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mariuzza RA, Phillips SE, Poljak RJ (1987) The structural basis of antigen-antibody recognition. Annu Rev Biophys Biophys Chem 16:139–159

    Article  CAS  PubMed  Google Scholar 

  6. Colman PM, Tulip WR, Varghese JN, Tulloch PA, Baker AT, Laver WG, Air GM, Webster RG (1989) Three-dimensional structures of influenza virus neuraminidase-antibody complexes. Philos Trans R Soc Lond B Biol Sci 323:511–518

    Article  CAS  PubMed  Google Scholar 

  7. Scherf T, Hiller R, Naider F, Levitt M, Anglister J (1992) Induced peptide conformations in different antibody complexes: molecular modeling of the three-dimensional structure of peptide-antibody complexes using NMR-derived distance restraints. Biochemistry 31:6884–6897

    Article  CAS  PubMed  Google Scholar 

  8. Sutcliffe JG, Shinnick TM, Green N, Liu FT, Niman HL, Lerner RA (1980) Chemical synthesis of a polypeptide predicted from nucleotide sequence allows detection of a new retroviral gene product. Nature 287:801–805

    Article  CAS  PubMed  Google Scholar 

  9. Walter G, Scheidtmann KH, Carbone A, Laudano AP, Doolittle RF (1980) Antibodies specific for the carboxy- and amino-terminal regions of simian virus 40 large tumor antigen. Proc Natl Acad Sci U S A 77:5197–5200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lerner RA, Green N, Alexander H, Liu FT, Sutcliffe JG, Shinnick TM (1981) Chemically synthesized peptides predicted from the nucleotide sequence of the hepatitis B virus genome elicit antibodies reactive with the native envelope protein of Dane particles. Proc Natl Acad Sci U S A 78:3403–3407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bittle JL, Houghten RA, Alexander H, Shinnick TM, Sutcliffe JG, Lerner RA, Rowlands DJ, Brown F (1982) Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 298:30–33

    Article  CAS  PubMed  Google Scholar 

  12. Pfaff E, Mussgay M, Böhm HO, Schulz GE, Schaller H (1982) Antibodies against a preselected peptide recognize and neutralize foot and mouth disease virus. EMBO J 1:869–874

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Posnett DN, McGrath H, Tam JP (1988) A novel method for producing anti-peptide antibodies. Production of site-specific antibodies to the T cell antigen receptor beta-chain. J Biol Chem 263:1719–1725

    CAS  PubMed  Google Scholar 

  14. Tam JP (1988) Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A 85:5409–5413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hansen PR, Holm A, Houen G (1993) Solid-phase peptide synthesis on proteins. Int J Pept Protein Res 41:237–245

    Article  CAS  PubMed  Google Scholar 

  16. Li GX, Zhou YJ, Yu H, Li L, Wang YX, Tong W, Hou JW, Xu YZ, Zhu JP, Xu AT, Tong GZ (2012) A novel dendrimeric peptide induces high level neutralizing antibodies against classical swine fever virus in rabbits. Vet Microbiol 156:200–204

    Article  CAS  PubMed  Google Scholar 

  17. Petrasovits LA (2014) Protein blotting protocol for beginners. Methods Mol Biol 1099:189–199

    Article  PubMed  Google Scholar 

  18. Kurien BT, Dorri Y, Dillon S, Dsouza A, Scofield RH (2011) An overview of Western blotting for determining antibody specificities for immunohistochemistry. Methods Mol Biol 717:55–67

    Article  CAS  PubMed  Google Scholar 

  19. Wheeler MJ (2013) Immunoassay techniques. Methods Mol Biol 1065:7–25

    Article  CAS  PubMed  Google Scholar 

  20. Wild D (ed) (2013) The immunoassay handbook. Elsevier, Oxford

    Google Scholar 

  21. Brooks SA (2012) Basic immunocytochemistry for light microscopy. Methods Mol Biol 878:1–30

    Article  CAS  PubMed  Google Scholar 

  22. Ramos-Vara JA (2011) Principles and methods of immunohistochemistry. Methods Mol Biol 691:83–96

    Article  CAS  PubMed  Google Scholar 

  23. Davies D (2012) Cell separations by flow cytometry. Methods Mol Biol 878:185–199

    Article  CAS  PubMed  Google Scholar 

  24. Givan AL (2011) Flow cytometry: an introduction. Methods Mol Biol 699:1–29

    Article  CAS  PubMed  Google Scholar 

  25. Isono E, Schwechheimer C (2010) Co-immunoprecipitation and protein blots. Methods Mol Biol 655:377–387

    Article  CAS  PubMed  Google Scholar 

  26. Uljon SN, Mazzarelli L, Chait BT, Wang R (2000) Analysis of proteins and peptides directly from biological fluids by immunoprecipitation/mass spectrometry. Methods Mol Biol 146:439–452

    CAS  PubMed  Google Scholar 

  27. Dahan R, Reiter Y (2012) T-cell-receptor-like antibodies—generation, function and applications. Expert Rev Mol Med. doi:10.1017/erm.2012.2

    PubMed  Google Scholar 

  28. Neumann F, Sturm C, Hülsmeyer M, Dauth N, Guillaume P, Luescher IF, Pfreundschuh M, Held G (2009) Fab antibodies capable of blocking T cells by competitive binding have the identical specificity but a higher affinity to the MHC-peptide-complex than the T cell receptor. Immunol Lett 125:86–92

    Article  CAS  PubMed  Google Scholar 

  29. Naz RK, Dabir P (2007) Peptide vaccines against cancer, infectious diseases, and conception. Front Biosci 12:1833–1844

    Article  CAS  PubMed  Google Scholar 

  30. Yamada A, Sasada T, Noguchi M, Itoh K (2013) Next-generation peptide vaccines for advanced cancer. Cancer Sci 104:15–21

    Article  CAS  PubMed  Google Scholar 

  31. Paduch M, Koide A, Uysal S, Rizk SS, Koide S, Kossiakoff AA (2013) Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods 60:3–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lu SM, Hodges RS (2002) A de novo designed template for generating conformation-specific antibodies that recognize alpha-helices in proteins. J Biol Chem 277:23515–23524

    Article  CAS  PubMed  Google Scholar 

  33. Sutcliffe JG, Shinnick TM, Green N, Lerner RA (1983) Antibodies that react with predetermined sites on proteins. Science 219:660–666

    Article  CAS  PubMed  Google Scholar 

  34. Shinnick TM, Sutcliffe JG, Green N, Lerner RA (1983) Synthetic peptide immunogens as vaccines. Annu Rev Microbiol 37:425–446

    Article  CAS  PubMed  Google Scholar 

  35. Brown F (1988) Use of peptides for immunization against foot-and-mouth disease. Vaccine 6:180–182

    Article  CAS  PubMed  Google Scholar 

  36. Van Regenmortel MH (1993) Synthetic peptides versus natural antigens in immunoassays. Ann Biol Clin (Paris) 51:39–41

    Google Scholar 

  37. Van Regenmortel MH, Briand JP, Muller S, Plaue S (Eds) (1988) Synthetic polypeptides as antigens. Laboratory techniques in biochemistry and molecular biology vol 19. Elsevier: Amsterdam

    Google Scholar 

  38. Van Regenmortel MH (2001) Antigenicity and immunogenicity of synthetic peptides. Biologicals 29:209–213

    Article  PubMed  Google Scholar 

  39. Fournel S, Muller S (2003) Synthetic peptides in the diagnosis of systemic autoimmune diseases. Curr Protein Pept Sci 4:261–274

    Article  CAS  PubMed  Google Scholar 

  40. Papini AM (2009) The use of post-translationally modified peptides for detection of biomarkers of immune-mediated diseases. J Pept Sci 15:621–628

    Article  CAS  PubMed  Google Scholar 

  41. Merrifield RB (1963) Solid phase peptide synthesis. I The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  42. Merrifield RB (1969) Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol 32:221–296

    CAS  PubMed  Google Scholar 

  43. Atherton E, Sheppard RC (1989) Solid Phase peptide synthesis: a practical approach. IRL Press, Oxford, England. ISBN 0-19-963067-4

    Google Scholar 

  44. Braciale TJ, Morrison LA, Sweetser MT, Sambrook J, Gething MJ, Braciale VL (1987) Antigen presentation pathways to class I and class II MHC-restricted T lymphocytes. Immunol Rev 98:95–114

    Article  CAS  PubMed  Google Scholar 

  45. Parker DC (1993) T cell-dependent B cell activation. Annu Rev Immunol 11:331–360

    Article  CAS  PubMed  Google Scholar 

  46. Fairchild PJ (1998) Presentation of antigenic peptides by products of the major histocompatibility complex. J Pept Sci 4:182–194

    Article  CAS  PubMed  Google Scholar 

  47. Appella E, Padlan EA, Hunt DF (1995) Analysis of the structure of naturally processed peptides bound by class I and class II major histocompatibility complex molecules. EXS 73:105–119

    CAS  PubMed  Google Scholar 

  48. Maffei A, Harris PE (1998) Peptides bound to major histocompatibility complex molecules. Peptides 19:179–198

    Article  CAS  PubMed  Google Scholar 

  49. Blaydes JP, Vojtesek B, Bloomberg GB, Hupp TR (2000) The development and use of phospho-specific antibodies to study protein phosphorylation. Methods Mol Biol 99:177–189

    CAS  PubMed  Google Scholar 

  50. Miller DL, Potempska A, Wegiel J, Mehta PD (2011) High-affinity rabbit monoclonal antibodies specific for amyloid peptides amyloid-β40 and amyloid-β42. J Alzheimers Dis 23:293–305

    CAS  PubMed  Google Scholar 

  51. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Article  CAS  PubMed  Google Scholar 

  52. Holm BE, Bergmann AC, Hansen PR, Koch C, Houen G, Trier NH (2014) Antibodies with specificity for native and denatured forms of ovalbumin differ in reactivity between enzyme-linked immunosorbent assays. APMIS. doi:10.1111/apm.12329

    Google Scholar 

  53. Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S (2014) An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform S1532–0464(14):00233. doi:10.1016/j.jbi.2014.11.003

    Google Scholar 

  54. Ansari HR, Raghava GP (2013) In silico models for B-cell epitope recognition and signaling. Methods Mol Biol 993:129–138

    Article  CAS  PubMed  Google Scholar 

  55. Ponomarenko JV, van Regenmortel MHV (2009) B-cell epitope prediction. In: Bourne PE, Gu J (eds) Structural bioinformatics. Wiley, New York, NY, pp 849–879

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Houen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Houen, G. (2015). Peptide Antibodies: Past, Present, and Future. In: Houen, G. (eds) Peptide Antibodies. Methods in Molecular Biology, vol 1348. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2999-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2999-3_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2998-6

  • Online ISBN: 978-1-4939-2999-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics