Optimization Methodologies for the Production of Pharmaceutical Products

  • M. Sebastian Escotet-Espinoza
  • Amanda Rogers
  • Marianthi G. IerapetritouEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Finding the most beneficial conditions during the development of a given product or process is among one of the top goals for both scientist and engineers across all industries. In the pharmaceutical industry, as global competition increases and there is a higher demand for accessible quality products, it is important to focus on the improvement of product development and manufacturing. Optimization methodologies can greatly aid the production of pharmaceutical products by providing a systematic framework to process improvement. In this review, general concepts regarding the implementation of optimization methods are introduced along with examples of their application in pharmaceutical manufacturing process design and formulation development. An overview of optimization methodologies used for the improvement of batch and continuous pharmaceutical manufacturing is presented. Challenges in the application of optimization methods in pharmaceutical manufacturing are discussed along with a future outlook of the field and its place in pharmaceutical process and product design. Overall the review points to optimization as a critical component in the design of improved and effective pharmaceutical products, in alignment with the common goals of both regulatory agencies and industry.

Key words

Optimization Manufacturing Formulation Surrogate-based Direct search methods 



The authors would like to thank the funding provided by the Engineering Research Center for Structure Organic Particulate Systems “ERC-SOPS” (NSF-0504497, NSF-ECC 0540855).


  1. 1.
    USFDA (2002) Pharmaceutical cGMPs for the 21st century: a risk-based approach. USDoHaH Services (ed). Rockville, MD: FDAGoogle Scholar
  2. 2.
    Administration UFaD (2004) Guidance for industry: PAT—A framework for innovative pharmaceutical development, manufacturing, and quality assurance. UDoHaH Services (ed). Rockville, MDGoogle Scholar
  3. 3.
    Castle BC, Forbes RA (2013) Impact of quality by design in process development on the analytical control strategy for a small-molecule drug substance. J Pharm Innov 8(4):247–264CrossRefGoogle Scholar
  4. 4.
    Sen M et al (2013) Multi-scale flowsheet simulation of an integrated continuous purification–downstream pharmaceutical manufacturing process. Int J Pharm 445(1–2):29–38PubMedCrossRefGoogle Scholar
  5. 5.
    Yu L (2008) Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res 25(4):781–791PubMedCrossRefGoogle Scholar
  6. 6.
    Belegundu A, Chandrupatla T (1999) Optimization concepts and applications in engineering. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  7. 7.
    Muzzio FJ (2006) Engineering approaches for pharmaceutical processes. In: Levin M (ed) Pharmaceutical process scale-up. Taylor & Francis, Boca Raton, FL, pp 57–69Google Scholar
  8. 8.
    Rogers AJ, Inamdar C, Ierapetritou MG (2013) An integrated approach to simulation of pharmaceutical processes for solid drug manufacture. Ind Eng Chem Res 53(13):5128–5147CrossRefGoogle Scholar
  9. 9.
    Montgomery D (2009) Design and analysis of experiments. Wiley, Hoboken, NJGoogle Scholar
  10. 10.
    Singh B, Gupta RK, Ahuja N (2006) Computer-assisted optimization of pharmaceutical formulation and processes, in pharmaceutical product development. CBS, New DelhiGoogle Scholar
  11. 11.
    Lewis G (2006) Optimization methods, in encyclopedia of pharmaceutical technology. Informa Healthcare, EnglandGoogle Scholar
  12. 12.
    Biegler L (2008) In: Green DW (ed) Perry’s chemical engineering handbook. McGraw-Hill Companies, New York, NYGoogle Scholar
  13. 13.
    Doornbos DA (1981) Optimisation in pharmaceutical sciences. Pharm Weekbl 3(1):549–577CrossRefGoogle Scholar
  14. 14.
    Shek E, Ghani M, Jones RE (1980) Simplex search in optimization of capsule formulation. J Pharm Sci 69(10):1135–1142PubMedCrossRefGoogle Scholar
  15. 15.
    De Saavedra MS, Cuadra IS (2001) Application of a mixed optimization strategy in the design of a pharmaceutical solid formulation at laboratory scale. Drug Dev Ind Pharm 27(7):675PubMedCrossRefGoogle Scholar
  16. 16.
    Worakul N, Wongpoowarak W, Boonme P (2002) Optimization in development of acetaminophen syrup formulation. Drug Dev Ind Pharm 28(3):345PubMedCrossRefGoogle Scholar
  17. 17.
    Rajab M et al (2010) Optimization of a metformin effervescent floating tablet containing hydroxypropyl methylcellulose and stearic acid. Pharmazie 65:67Google Scholar
  18. 18.
    Patel DP, Patel NM, Pandya NN, Jogani PD (2007) Formulation and optimization of carbamazepine floating tablets. Ind J Pharm Sci 69:763CrossRefGoogle Scholar
  19. 19.
    Plumb AP et al (2003) Effect of varying optimization parameters on optimization by guided evolutionary simulated annealing (GESA) using a tablet film coat as an example formulation. Eur J Pharm Sci 18(3-4):259–266PubMedCrossRefGoogle Scholar
  20. 20.
    Plumb AP et al (2005) Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm. Eur J Pharm Sci 25(4-5):395–405PubMedCrossRefGoogle Scholar
  21. 21.
    Vaghani SS et al (2012) Design and optimization of a stomach-specific drug delivery system of repaglinide: application of simplex lattice design. Pharm Dev Technol 17(1):55–65PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang JC, Chen YZ, Wu ZN, Liao WR (2012) Optimize the preparation process of Erigeron breviscapus sustained-release pellets based on artificial neural network and particle swarm optimization algorithm. J Chinese Med Mater 35:127–133Google Scholar
  23. 23.
    Abraham A, Grosan C, Ţigan Ş (2007) Ensemble of hybrid neural network learning approaches for designing pharmaceutical drugs. Neural Comput Appl 16(3):307–316CrossRefGoogle Scholar
  24. 24.
    Nauman EB, Patel K, Karande P (2011) Design of optimized diffusion-controlled transdermal drug delivery systems. Drug Dev Ind Pharm 37(1):93–102PubMedCrossRefGoogle Scholar
  25. 25.
    Bhattacharyya S et al (2007) Design, evaluation and statistical optimisation of a controlled release multiparticulate acyclovir delivery system. Lat Am J Pharm 26(6):852Google Scholar
  26. 26.
    Prajapatia SP, Patel L, Patel C (2011) Floating matrix tablets of domperidone formulation and optimization using simplex lattice design. Iran J Pharm Res 10:447Google Scholar
  27. 27.
    Varshosaz JM, Moazen E, Fathi M (2012) Preparation of carvedilol nanoparticles by emulsification method and optimization of drug release: surface response design versus genetic algorithm. J Dispers Sci Technol 33(10):1480CrossRefGoogle Scholar
  28. 28.
    Barmpalexis PK, Kachrimanis K, Georgarakis F (2011) Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming. Eur J Pharm Biopharm 77:122PubMedCrossRefGoogle Scholar
  29. 29.
    Barmpalexis P et al (2011) Symbolic regression via genetic programming in the optimization of a controlled release pharmaceutical formulation. Chemom Intell Lab Syst 107(1):75–82CrossRefGoogle Scholar
  30. 30.
    Patel MS, Shah TJ, Amin AF, Shah NN (2009) Design, development and optimization of a novel time and pH-dependent colon targeted drug delivery system. Pharm Dev Technol 14(1):62–69PubMedGoogle Scholar
  31. 31.
    Qu N et al (2008) Radial basis function networks combined with genetic algorithm applied to nondestructive determination of compound erythromycin ethylsuccinate powder. Chemom Intell Lab Syst 90(2):145–152CrossRefGoogle Scholar
  32. 32.
    Momenbeik F, Roosta M, Nikoukar AA (2010) Simultaneous microemulsion liquid chromatographic analysis of fat-soluble vitamins in pharmaceutical formulations: optimization using genetic algorithm. J Chromatogr A 1217(24):3770–3773PubMedCrossRefGoogle Scholar
  33. 33.
    Chaudhury A et al (2014) Population balance model development, validation, and prediction of CQAs of a high-shear wet granulation process: towards QbD in drug product pharmaceutical manufacturing. J Pharm Innov 9(1):53–64CrossRefGoogle Scholar
  34. 34.
    Muteki K et al (2013) Mixture component prediction using iterative optimization technology (calibration-free/minimum approach). Ind Eng Chem Res 52(35):12258–12268CrossRefGoogle Scholar
  35. 35.
    Raaymakers WH, Hoogeveen J (2000) Scheduling multipurpose batch process industries with no-wait restrictions by simulated annealing. Eur J Oper Res 126:131CrossRefGoogle Scholar
  36. 36.
    Graells MC, Canton J, Peschaud B, Puigjaner L (1998) General approach and tool for the scheduling of complex production systems. Comput Chem Eng 22:S395CrossRefGoogle Scholar
  37. 37.
    Hamamoto SY, Yih Y, Salvendy G (1999) Development and validation of genetic algorithm-based facility layout – a case study in the pharmaceutical industry. Int J Prod Res 37(4):749–768CrossRefGoogle Scholar
  38. 38.
    Andradóttir S (2006) Chapter 20: An overview of simulation optimization via random search. In: Shane GH, Barry LN (eds) Handbooks in operations research and management science. Elsevier, Amsterdam, pp 617–631Google Scholar
  39. 39.
    Begtra JB, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281Google Scholar
  40. 40.
    Calzolari D et al (2008) Search algorithms as a framework for the optimization of drug combinations. PLoS Comput Biol 4(12):e1000249PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Maiser B, Dismer F, Hubbuch J (2014) Optimization of random PEGylation reactions by means of high throughput screening. Biotechnol Bioeng 111(1):104–114PubMedCrossRefGoogle Scholar
  42. 42.
    Namasivayam V, Bajorath J (2012) Multiobjective particle swarm optimization: automated identification of structure-activity relationship-informative compounds with favorable physicochemical property distributions. J Chem Inf Model 52(11):2848–2855PubMedCrossRefGoogle Scholar
  43. 43.
    Pandeya ST, Thakkar D (2005) Combinatorial chemistry: a novel method in drug discovery and its application. Indian J Chem 44B:335Google Scholar
  44. 44.
    Swisher J et al (2004) A survey of recent advances in discrete input parameter discrete-event simulation optimization. IIE Trans 36(6):591CrossRefGoogle Scholar
  45. 45.
    Wang X, Tang L (2012) A discrete particle swarm optimization algorithm with self-adaptive diversity control for the permutation flowshop problem with blocking. Appl Soft Comput 12(2):652–662CrossRefGoogle Scholar
  46. 46.
    Zhou Y-P et al (2006) Adaptive configuring of radial basis function network by hybrid particle swarm algorithm for QSAR studies of organic compounds. J Chem Inf Model 46:2494–2501PubMedCrossRefGoogle Scholar
  47. 47.
    Bindschaedler C, Gurny R (1982) Optimization of pharmaceutical formulations by the simplex method using a TI 59 calculator. Pharm Acta Helv 57(9):251–255PubMedGoogle Scholar
  48. 48.
    Hayes SD, Dunne A, Smart T, Davis J (2003) Interpretation and optimization of the dissolution specifications for a modified release product with an in vivo–in vitro correlation (IVIVC). J Pharm Sci 93:57Google Scholar
  49. 49.
    Leonarski F et al (2013) Evolutionary algorithm in the optimization of a coarse-grained force field. J Chem Theory Comput 9(11):4874–4889PubMedCrossRefGoogle Scholar
  50. 50.
    Pulgarin JM, Molina AA, Pardo MA (2002) The use of modified simplex method to optimize the room temperature phosphorescence variables in the determination of an antihypertensive drug. Talanta 57(4):795–805CrossRefGoogle Scholar
  51. 51.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308CrossRefGoogle Scholar
  52. 52.
    Spendley WH, Hext GR, Himsworth FR (1962) Sequential application of simplex designs in optimization and evolutionary operation. Technometrics 4:441CrossRefGoogle Scholar
  53. 53.
    Xu H et al (2000) Application of a modified simplex method to the multivariable optimization of a new FIA system for the determination of osmium. Fresenius J Anal Chem 368(8):780PubMedCrossRefGoogle Scholar
  54. 54.
    Coello C et al (1996) Multiobjective optimization using a micro-genetic algorithm. In: Evolutionary multi-criterion optimization, Lecture notes in computer science. Springer, Berlin, pp 126–140Google Scholar
  55. 55.
    Cruz-Monteagudo M et al (2008) Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries. J Comb Chem 10:897PubMedCrossRefGoogle Scholar
  56. 56.
    da Silva GA, Augusto F, Poppi RJ (2007) Simultaneous optimization by neuro-genetic approach of a multiresidue method for determination of pesticides in Passiflora alata infuses using headspace solid phase microextraction and gas chromatography. J Chromatogr A 1138(1-2):251–261PubMedCrossRefGoogle Scholar
  57. 57.
    Davis L (1987) Genetic algorithms and simulated annealing. Pitman, LondonGoogle Scholar
  58. 58.
    Leardi R (2001) Genetic algorithms in chemometrics and chemistry: a review. J Chemometr 15(7):559–569CrossRefGoogle Scholar
  59. 59.
    Mandal A, Ranjan P, Wu CFJ (2009) G-SELC: optimization by sequential elimination of level combinations using genetic algorithms and Gaussian processes. Annals Appl Stat 3(1):398–421CrossRefGoogle Scholar
  60. 60.
    Perez-Escobedo JL (2010) Multiobjective optimization of New Product Development in the pharmaceutical industry. In: MEGeP. Institut National Polytechnique de Toulouse, FranceGoogle Scholar
  61. 61.
    Smith BG, Gemperline P (2000) Wavelength selection and optimization of pattern recognition methods using the genetic algorithm. Anal Chim Acta 423:167–177CrossRefGoogle Scholar
  62. 62.
    Veldhuizen DAV, Lamont GB (2000) Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput 8(2):125–147PubMedCrossRefGoogle Scholar
  63. 63.
    Wang J et al (2006) Genetic algorithm-optimized QSPR models for bioavailability, protein binding, and urinary excretion. J Chem Inf Model 46(6):2674–2683PubMedCrossRefGoogle Scholar
  64. 64.
    Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271CrossRefGoogle Scholar
  65. 65.
    Fonseca CM, Fleming PJ (1995) An overview of evolutionary algorithms in multiobjective optimization. Evol Comput 3(1):1–16CrossRefGoogle Scholar
  66. 66.
    Brünger A et al (1990) Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystall A 46:585CrossRefGoogle Scholar
  67. 67.
    Bulgak AASJL. Integrating a modified simulated annealing algorithm with the simulation of a manufacturing system to optimize buffer sizes in automatic assembly systems. Proceedings of the 1988 Winter Simulation Conference, San Diego, CA, 1988Google Scholar
  68. 68.
    Goffe WF, Ferrier GD, Rogers J (1994) Global optimization of statistical functions with simulated annealing. J Econ 60:65CrossRefGoogle Scholar
  69. 69.
    Ingber L (1993) Simulated annealing: practice versus theory. Math Comp Model 18(11):29CrossRefGoogle Scholar
  70. 70.
    Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220:671PubMedCrossRefGoogle Scholar
  71. 71.
    Kirkpatrick S (1984) Optimization by simulated annealing: quantitative studies. J Stat Phys 34(5-6):975–986CrossRefGoogle Scholar
  72. 72.
    Laarhoven PM, Aarts EL (1987) Simulated annealing. In: Simulated annealing: theory and applications. Springer, Dordrecht, pp 7–15CrossRefGoogle Scholar
  73. 73.
    Manz EH, Haddock J, Mittenthal, Optimization of an automated manufacturing systems simulation model using simulated annealing. Proceedings of the 1989 Winter Simulation Conference, Washington, DC, 1989Google Scholar
  74. 74.
    Ogata K, Umeyama H (2000) An automatic homology modeling method consisting of database searches and simulated annealing. J Mol Graph Model 18(3):258–272PubMedCrossRefGoogle Scholar
  75. 75.
    Tekin E, Sabuncuoglu I (2004) Simulation optimization: a comprehensive review on theory and applications. IIE Trans 36(11):1067–1081CrossRefGoogle Scholar
  76. 76.
    Wales DJ, Scheraga HA (1999) Global optimization of clusters, crystals, and biomolecules. Science 285(5432):1368–1372PubMedCrossRefGoogle Scholar
  77. 77.
    Venter G (2010) Review of optimization techniques. In: Blockley RS, Shyy W (eds) Encyclopedia of aerospace engineering. John Wiley & Sons, New York, NYGoogle Scholar
  78. 78.
    Nocedal J, Stephen W (1999) Numerical optimization. Springer, New York, NYCrossRefGoogle Scholar
  79. 79.
    Ting N (2006) Dose finding in drug development. Springer, New York, NYCrossRefGoogle Scholar
  80. 80.
    Masulli FT, Verkhivker G (2008) Computational intelligence methods for bioinformatics and biostatistics: 5th international meeting. In: CIBB international meeting. Springer, New York, NYGoogle Scholar
  81. 81.
    Dawoodbhai TS et al (1991) Optimization of tablet formulations containing talc. Drug Dev Ind Pharm 17(10):1343–1371CrossRefGoogle Scholar
  82. 82.
    Li Y et al (2010) A computer algorithm for optimizing to extract effective diffusion coefficients of drug delivery from cylinders. Infom Technol J 9(8):647–1652Google Scholar
  83. 83.
    Ghaffari A et al (2006) Performance comparison of neural network training algorithms in modeling of bimodal drug delivery. Int J Pharm 327(1-2):126–138PubMedCrossRefGoogle Scholar
  84. 84.
    Toumi A et al (2007) Efficient optimization of simulated moving bed processes. Chem Eng Process Process Intensif 46(11):1067–1084CrossRefGoogle Scholar
  85. 85.
    Toulouse C et al (1996) Optimisation and scale-up of batch chemical reactors: impact of safety constraints. Chem Eng Sci 51(10):2243CrossRefGoogle Scholar
  86. 86.
    Makrydaki FG, Georgakis C, Saranteas K. Dynamic optimization of a batch pharmaceutical reaction using the design of dynamic experiments (DoDE): the case of an asymmetric catalytic hydrogenation reaction. In: Proceedings of the 9th International Symposium on Dynamics and Control of Process Systems, 2010, Leuven, BelgiumGoogle Scholar
  87. 87.
    Sen M et al (2013) Flowsheet optimization of an integrated continuous purification-processing pharmaceutical manufacturing operation. Chem Eng Sci 102:56–66CrossRefGoogle Scholar
  88. 88.
    Kim J et al (2010) A heuristic-embedded scheduling system for a pharmaceutical intermediates manufacturing plant. Ind Eng Chem Res 49:12646–12653CrossRefGoogle Scholar
  89. 89.
    Chambers CE, Snir EM, Ata A (2009) The use of flexible manufacturing capacity in pharmaceutical product introductions. Decis Sci 40(2):243CrossRefGoogle Scholar
  90. 90.
    Battiti R (1992) First- and second-order methods for learning: between steepest descent and Newton’s method. Neural Comput 4(2):141–166CrossRefGoogle Scholar
  91. 91.
    Dinçer S, Özdurmu S (1977) Mathematical model for enteric film coating of tablets. J Pharm Sci 66(8):1070–1073PubMedCrossRefGoogle Scholar
  92. 92.
    Fletcher R, Powell MJD (1963) A rapidly convergent descent method for minimization. Comput J 6(2):163–168CrossRefGoogle Scholar
  93. 93.
    Golfetto WA, Fernandes SS (2012) A review of gradient algorithms for numerical computation of optimal trajectories. J Aerosp Technol Manag 4(2):131–143CrossRefGoogle Scholar
  94. 94.
    Graña Drummond LM, Svaiter BF (2005) A steepest descent method for vector optimization. J Comput Appl Math 175(2):395–414CrossRefGoogle Scholar
  95. 95.
    Lemarechal C (2012) Cauchy and the gradient method. Doc Math Extra Volume: 251–254.Google Scholar
  96. 96.
    Byvatov E et al (2003) Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 43(6):1882–1889PubMedCrossRefGoogle Scholar
  97. 97.
    Pulkkinen S (2008) A review of methods for unconstrained optimization: theory, implementation and testing, in department of mathematics and statistics. University of Helsinki, FinlandGoogle Scholar
  98. 98.
    Andrews CW, Bennett L, Yu LX (2000) Pharm Res 17:639–644PubMedCrossRefGoogle Scholar
  99. 99.
    Hou TW, Wang J, Zhang W, Xu X (2007) J Chem Inf Model 47:460–463PubMedCrossRefGoogle Scholar
  100. 100.
    Ma CY et al (2008) Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method. J Pharm Biomed Anal 47(4-5):677–682PubMedCrossRefGoogle Scholar
  101. 101.
    Peh K-K et al (2000) Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor. Pharm Res 17(11):1384–1389PubMedCrossRefGoogle Scholar
  102. 102.
    Sorich MJ et al (2003) Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-glucuronosyltransferase isoforms. J Chem Inf Comput Sci 43(6):2019–2024PubMedCrossRefGoogle Scholar
  103. 103.
    Trotter MH, Holden SB (2003) QSAR Comb Sci 22:533–548CrossRefGoogle Scholar
  104. 104.
    Perry RH, Green DW (2005) Perry’s chemical engineering handbook, 5th edn. McGraw-Hill, New York, NYGoogle Scholar
  105. 105.
    Fallgreen M (2006) On the robustness of conjugate-gradient methods and quasi-Newton methods. Department of Mathematics, Royal Institute of Technology (KTH), SwedenGoogle Scholar
  106. 106.
    Bissett B (2003) Practical pharmaceutical laboratory automation. CRC Press, Boca Raton, FLGoogle Scholar
  107. 107.
    Nguyen LB et al (2013) Combining genetic algorithm and Levenberg-Marquardt algorithm in training neural network for hypoglycemia detection using EEG signals. Conf Proc IEEE Eng Med Biol Soc 2013:5386–5389PubMedGoogle Scholar
  108. 108.
    Sadegh Zadeh K (2011) A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms. Comput Biol Med 41(1):24–36PubMedCrossRefGoogle Scholar
  109. 109.
    Ueckert S, Nyberg J, Hooker A (2006) Comparison of different global optimal design approximations. Department of Pharmaceutical Biosciences, Uppsala University, SwedenGoogle Scholar
  110. 110.
    Xie D et al (2003) Principal component analysis combined with truncated-Newton minimization for dimensionality reduction of chemical databases. Math Program 95(1):161–185CrossRefGoogle Scholar
  111. 111.
    Yoshida K et al (2013) Estimation of feasible solution space using Cluster Newton Method: application to pharmacokinetic analysis of irinotecan with physiologically-based pharmacokinetic models. BMC Syst Biol 7(Suppl 3):S3PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Siddhaye S et al (2004) Pharmaceutical product design using combinatorial optimization. Comput Chem Eng 28(3):425–434CrossRefGoogle Scholar
  113. 113.
    Han Z-H, Zhang K-S (2012) Surrogate-based optimization. In: Roeva O (ed) Real-world applications of genetic algorithms. InTech, Rijeka, CroatiaGoogle Scholar
  114. 114.
    Lo Nigro G et al (2013) A user friendly real option based model to optimize pharmaceutical R&D portfolio. J Appl Oper Res 5(3):83–95Google Scholar
  115. 115.
    Jia Z et al (2009) Predictive modeling for pharmaceutical processes using kriging and response surface. J Pharm Innov 4(4):174–186CrossRefGoogle Scholar
  116. 116.
    Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45(1-3):50–79CrossRefGoogle Scholar
  117. 117.
    Queipo NV et al (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1):1–28CrossRefGoogle Scholar
  118. 118.
    Boukouvala F (2013) Integrated simulation and optimization of continuous pharmaceutical manufacturing, in chemical and biochemical engineering. Rutgers, The State University of New Jersey, New Brunswick, NJGoogle Scholar
  119. 119.
    Boukouvala F, Ierapetritou M (2013) Surrogate-based optimization of expensive flowsheet modeling for continuous pharmaceutical manufacturing. J Pharm Innov 8(2):131–145CrossRefGoogle Scholar
  120. 120.
    Cressie N (1985) Fitting variogram models by weighted least squares. J Int Assoc Math Geol 17(5):563–586CrossRefGoogle Scholar
  121. 121.
    Kleijnen JPC (2009) Kriging metamodeling in simulation: a review. Eur J Oper Res 192(3):707–716CrossRefGoogle Scholar
  122. 122.
    Simpson TW et al (2001) Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J 39(12):2233–2241CrossRefGoogle Scholar
  123. 123.
    Baş D, Boyacı İH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78(3):836–845CrossRefGoogle Scholar
  124. 124.
    Bezerra MA et al (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977PubMedCrossRefGoogle Scholar
  125. 125.
    Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev Comput Stat 2(2):128–149CrossRefGoogle Scholar
  126. 126.
    Raymond HM, Montgomery DC (1995) Response surface methodology: process and product in optimization using designed experiments. Wiley, New York, NYGoogle Scholar
  127. 127.
    Li G, Wang S-W, Rabitzl H (2000) High dimensional model representations (HDMR): concepts and applications. In Proceedings of the Institute of Mathematics and Its Applications Workshop on Atmospheric Modeling, pp 15–19Google Scholar
  128. 128.
    Li G, Wang S-W, Rabitz H (2002) Practical approaches to construct RS-HDMR component functions. J Phys Chem A 106(37):8721CrossRefGoogle Scholar
  129. 129.
    Rogers A, Hashemi A, Ierapetritou M (2013) Modeling of particulate processes for the continuous manufacture of solid-based pharmaceutical dosage forms. Processes 1(2):67–127CrossRefGoogle Scholar
  130. 130.
    Fyfe C (2005) Artificial neural networks. In: Gabrys B, Leiviskä K, Strackeljan J (eds) Do smart adaptive systems exist? Springer, Berlin, pp 57–79CrossRefGoogle Scholar
  131. 131.
    Abraham A (2005) Artificial neural networks. In: Handbook of measuring system design. John Wiley & Sons, New York, NYGoogle Scholar
  132. 132.
    Achanta AS, Kowalski JG, Rhodes CT (1995) Artificial neural networks: implications for pharmaceutical sciences. Drug Dev Ind Pharm 21(1):119–155CrossRefGoogle Scholar
  133. 133.
    Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in the pharmaceutical research. J Pharm Biomed Anal 22:717PubMedCrossRefGoogle Scholar
  134. 134.
    Sutariya V et al (2013) Artificial neural network in drug delivery and pharmaceutical research. Open Bioinforma J 7:46–62Google Scholar
  135. 135.
    Cui Y et al (2012) Variable selection in multivariate modeling of drug product formula and manufacturing process. J Pharm Sci 101(12):4597–4607PubMedCrossRefGoogle Scholar
  136. 136.
    Tomba E, Barolo M, García-Muñoz S (2014) In-silico product formulation design through latent variable model inversion. Chem Eng Res Des 92(3):534–544CrossRefGoogle Scholar
  137. 137.
    Tomba E et al (2013) General procedure to aid the development of continuous pharmaceutical processes using multivariate statistical modeling - an industrial case study. Int J Pharm 444(1-2):25–39PubMedCrossRefGoogle Scholar
  138. 138.
    Tomba E et al (2013) Latent variable modeling to assist the implementation of Quality-by-Design paradigms in pharmaceutical development and manufacturing: a review. Int J Pharm 457(1):283–297PubMedCrossRefGoogle Scholar
  139. 139.
    García Muñoz S, Padovani V, Mercado J (2014) A computer aided optimal inventory selection system for continuous quality improvement in drug product manufacture. Comput Chem Eng 60:396–402CrossRefGoogle Scholar
  140. 140.
    Ende D et al (2007) API quality by design example from the torcetrapib manufacturing process. J Pharm Innov 2(3-4):71–86CrossRefGoogle Scholar
  141. 141.
    Hayashi Y et al (2012) Reliability evaluation of nonlinear design space in pharmaceutical product development. J Pharm Sci 101(1):333–341PubMedCrossRefGoogle Scholar
  142. 142.
    Kikuchi S et al (2011) Latent structure analysis in pharmaceutical formulations using Kohonen’s self-organizing map and a Bayesian network. J Pharm Sci 100(3):964–975PubMedCrossRefGoogle Scholar
  143. 143.
    Kourti T (2010) Pharmaceutical manufacturing: the role of multivariate analysis in design space, control strategy, process understanding, troubleshooting, and optimization. In: Ende DJa (ed) Chemical engineering in the pharmaceutical industry. John Wiley & Sons, New York, pp 853–878CrossRefGoogle Scholar
  144. 144.
    Norioka T et al (2011) Optimization of the manufacturing process for oral formulations using multivariate statistical methods. J Pharm Innov 6(3):157–169CrossRefGoogle Scholar
  145. 145.
    Onuki Y, Morishita M, Takayama K (2004) Formulation optimization of water-in-oil-water multiple emulsion for intestinal insulin delivery. J Control Release 97(1):91–99PubMedCrossRefGoogle Scholar
  146. 146.
    Palabiyik M et al (2013) Multivariate optimization model in a partial least squares-1 method for simultaneous determination of dorzolamide hydrochloride and timolol maleate in eye drops. Curr Pharm Anal 9(4):404–412CrossRefGoogle Scholar
  147. 147.
    Portillo P et al (2008) Quality by design methodology for development and scale-up of batch mixing processes. J Pharm Innov 3(4):258–270CrossRefGoogle Scholar
  148. 148.
    Takayama K et al (2004) Multivariate spline interpolation as a novel method to optimize pharmaceutical formulations. Pharmazie 59(5):392–395PubMedGoogle Scholar
  149. 149.
    ten Berge J (1993) Least squares optimization in multivariate analysis. DSWO Press, LeidenGoogle Scholar
  150. 150.
    Varshosaz J, Eskandari S, Tabakhian M (2010) Production and optimization of valproic acid nanostructured lipid carriers by the Taguchi design. Pharm Dev Technol 15(1):89–96PubMedCrossRefGoogle Scholar
  151. 151.
    Vignaduzzo S et al (2011) Multivariate optimization and validation of a CZE method for the analysis of pridinol mesylate and meloxicam in tablets. Chromatographia 74(7-8):609–617CrossRefGoogle Scholar
  152. 152.
    Yasuda A et al (2010) Self-organizing map analysis using multivariate data from theophylline powders predicted by a thin-plate spline interpolation. J Pharm Sci 99(11):4535–4542PubMedCrossRefGoogle Scholar
  153. 153.
    Colbourn EA, Rowe RC (2006) Neural computing and formulation optimization. In: Encyclopedia of pharmaceutical technology. England, Informa HealthcareGoogle Scholar
  154. 154.
    Aksu B et al (2012) Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression. AAPS PharmSciTech 13(4):1138–1146PubMedCentralPubMedCrossRefGoogle Scholar
  155. 155.
    Huang J, Goolcharran C, Ghosh K (2011) A quality by design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods. Eur J Pharm Biopharm 78(1):141–150PubMedCrossRefGoogle Scholar
  156. 156.
    Wu TP, Pan W, Chen J, Shang R (2000) Formulation optimization technique based on artificial neural network in salbutamol sulfate osmotic pump tablets. Drug Dev Ind Pharm 26:211PubMedCrossRefGoogle Scholar
  157. 157.
    Leonardi D et al (2009) Development of novel formulations for Chagas’ disease: optimization of benznidazole chitosan microparticles based on artificial neural networks. Int J Pharm 367(1–2):140–147PubMedCrossRefGoogle Scholar
  158. 158.
    Barmpalexis P et al (2010) Artificial neural networks in the optimization of a nimodipine controlled release tablet formulation. Eur J Pharm Biopharm 74(2):316–323PubMedCrossRefGoogle Scholar
  159. 159.
    Ali AA, Ali AM (2013) Optimization of propranolol HCl release kinetics from press coated sustained release tablets. Pharm Dev Technol 18(5):1238–1246PubMedCrossRefGoogle Scholar
  160. 160.
    Takayama KM, Morva A, Fujikawa M, Hattori Y, Obata Y, Nagai T (2000) Formula optimization of theophylline controlled release tablet based on artificial neural networks. J Control Release 68:175PubMedCrossRefGoogle Scholar
  161. 161.
    Takayama K, Fujikawa M, Nagai T (1999) Artificial neural network as a novel method to optimize pharmaceutical formulations. Pharm Res 16(1):1–6PubMedCrossRefGoogle Scholar
  162. 162.
    Turkoglu JO, Ozarslan R, Sakr A (1995) Artificial neural net- work analysis of a direct compression tableting study. Eur J Pharm Biopharm 41:315Google Scholar
  163. 163.
    Bose A, Wong TW, Singh N (2013) Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics. Saudi Pharm J 21(2):201–213PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    Malakar J, Nayak AK, Goswami S (2012) Use of response surface methodology in the formulation and optimization of bisoprolol fumarate matrix tablets for sustained drug release. ISRN Pharm 2012:730624PubMedCentralPubMedGoogle Scholar
  165. 165.
    Rotthauser B et al (1998) Optimization of an effervescent tablet formulation containing spray dried l-leucine and polyethylene glycol 6000 as lubricants using a central composite design. Eur J Pharm Biopharm 46:85PubMedCrossRefGoogle Scholar
  166. 166.
    Behzadi SS et al (2006) Investigation of the stability of tablets prepared from sucrose and citric acid anhydride utilizing response surface methodology. Eur Food Res Technol 223(2):238–245CrossRefGoogle Scholar
  167. 167.
    Late SG, Banga AK (2010) Response surface methodology to optimize novel fast disintegrating tablets using beta cyclodextrin as diluent. AAPS PharmSciTech 11(4):1627–1635PubMedCentralPubMedCrossRefGoogle Scholar
  168. 168.
    Monajjemzadeh F et al (2013) Design and optimization of sustained-release divalproex sodium tablets with response surface methodology. AAPS PharmSciTech 14(1):245–253PubMedCentralPubMedCrossRefGoogle Scholar
  169. 169.
    Zhang Q et al (2013) Optimized water vapor permeability of sodium alginate films using response surface methodology. Chinese J Oceanol Limnol 31(6):1196–1203CrossRefGoogle Scholar
  170. 170.
    Gabrielsson J, Lindberg N-O, Lundstedt T (2002) Multivariate methods in pharmaceutical applications. J Chemometr 16(3):141–160CrossRefGoogle Scholar
  171. 171.
    Zhang L, Henson MJ, Sekulic SS (2005) Multivariate data analysis for Raman imaging of a model pharmaceutical tablet. Anal Chim Acta 545(2):262–278CrossRefGoogle Scholar
  172. 172.
    Polizzi MA, García-Muñoz S (2011) A framework for in-silico formulation design using multivariate latent variable regression methods. Int J Pharm 418(2):235–242PubMedCrossRefGoogle Scholar
  173. 173.
    Garcia-Munoz S (2014) Two novel methods to analyze the combined effect of multiple raw-materials and processing conditions on the product’s final attributes: JRPLS and TPLS. Chemom Intell Lab Syst 133:49–62CrossRefGoogle Scholar
  174. 174.
    García-Muñoz S, Mercado J (2013) Optimal selection of raw materials for pharmaceutical drug product design and manufacture using mixed integer nonlinear programming and multivariate latent variable regression models. Ind Eng Chem Res 52(17):5934–5942CrossRefGoogle Scholar
  175. 175.
    Norioka T et al (2013) A novel approach to establishing the design space for the oral formulation manufacturing process. Chem Pharm Bull 61(1):39–49PubMedCrossRefGoogle Scholar
  176. 176.
    Ghaffari A, Abdollahi H, Khoshayand MR, Bozchalooi IS, Dadgar A, Rafiee-Tehrani M (2006) Performance comparison of neural network training algorithms in modeling of bimodal drug delivery. Int J Pharm 327(1-2):126–38PubMedCrossRefGoogle Scholar
  177. 177.
    Murtoniemi EY, Yliruusi Y, Kinnunen P, Merkku P, Leiviska K (1994) The advantages by the use of neural networks in modelling the fluidized bed granulation process. Int J Pharm 108:155CrossRefGoogle Scholar
  178. 178.
    Murtoniemi EY, Merkku P, Kinnunen P, Leiviska K, Yilruusi J (1994) Effect of neural network topology and training end point in modelling the fludized bed granulation process. Int J Pharm 110:101CrossRefGoogle Scholar
  179. 179.
    Watano ST, Takashima H, Miyanami K (1996) Scale-up of agitation fluidized bed granulation by neural networks. Chem Pharm Bull 45:1193CrossRefGoogle Scholar
  180. 180.
    Watano SS, Sato Y, Miyanami K (1997) Application of a neural network to granulation scale-up. Powder Technol 90:153CrossRefGoogle Scholar
  181. 181.
    Djuris J et al (2012) Design space approach in optimization of fluid bed granulation and tablets compression process. ScientificWorldJournal 2012:185085PubMedCentralPubMedCrossRefGoogle Scholar
  182. 182.
    Inghelbrecht SR, Remon J-P, Fernandes de Aguiar P, Walczak B, Massart DL, Van De Velde R, De Baets P, Vermeersch H, De Backer P (1997) Instrumentation of a roll compactor and the evaluation of the parameter setting by neural networks. Int J Pharm 148:103CrossRefGoogle Scholar
  183. 183.
    Turkoglu MA, Aydin I, Murray M, Sakr A (1999) Modelling of a roller-compaction process using neural networks and genetic algorithms. Eur J Pharm Biopharm 48:239PubMedCrossRefGoogle Scholar
  184. 184.
    Rocksloh K et al (1999) Optimization of crushing strength and disintegration time of a high-dose plant extract tablet by neural networks. Drug Dev Ind Pharm 25(9):1015–1025PubMedCrossRefGoogle Scholar
  185. 185.
    Walsh DE, Zaccari N (2001) Predictive statistical process controls—a neural network approach to maximizing tablet yield. Pharmaceut Tech Asia 13(9):18Google Scholar
  186. 186.
    Aksu B et al (2013) A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharm Dev Technol 18(1):236–245PubMedCrossRefGoogle Scholar
  187. 187.
    Sovány T et al (2013) Application of physicochemical properties and process parameters in the development of a neural network model for prediction of tablet characteristics. AAPS PharmSciTech 14(2):511–516PubMedCentralPubMedCrossRefGoogle Scholar
  188. 188.
    Zain AM, Haron H, Sharif S (2010) Prediction of surface roughness in the end milling machining using artificial neural network. Expert Syst Appl 37(2):1755–1768CrossRefGoogle Scholar
  189. 189.
    Zhang YB et al (2014) Ultrasound-assisted extraction and purification of schisandrin B from Schisandra chinensis (Turcz.) Baill seeds: optimization by response surface methodology. Ultrason Sonochem 21(2):461–466PubMedCrossRefGoogle Scholar
  190. 190.
    Dubey A et al (2012) Improvement of tablet coating uniformity using a quality by design approach. AAPS PharmSciTech 13(1):231–246PubMedCentralPubMedCrossRefGoogle Scholar
  191. 191.
    Boukouvala F, Muzzio FJ, Ierapetritou MG (2010) Design space of pharmaceutical processes using data-driven-based methods. J Pharm Innov 5(3):119–137CrossRefGoogle Scholar
  192. 192.
    Boukouvala F, Muzzio FJ, Ierapetritou MG (2011) Dynamic data-driven modeling of pharmaceutical processes. Ind Eng Chem Res 50(11):6743–6754CrossRefGoogle Scholar
  193. 193.
    Li H et al (2013) Drug release analysis and optimization for drug-eluting stents. ScientificWorldJournal 2013:1–5Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Sebastian Escotet-Espinoza
    • 1
  • Amanda Rogers
    • 1
  • Marianthi G. Ierapetritou
    • 1
    Email author
  1. 1.Department of Chemical and Biochemical EngineeringRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations