Skip to main content

A Quantitative Approach to Understand Raw Material Variability

  • Protocol

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The properties of raw materials can affect the properties and quality of intermediates and the final product. The flow behavior of powders, the form of the raw materials for solid oral drug product manufacturing processes, is poorly understood. Thus, the prediction of manufacturability and process performance is difficult. This is further complicated with variability in raw material flow properties. This chapter discusses seven properties typically characterized and the techniques used to measure them. The state of the art in applying this information to define a formulation of manufacturing process is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Muzzio FJ et al (2002) Powder technology in the pharmaceutical industry: the need to catch up fast. Powder Technol 124:1–7

    CAS  Google Scholar 

  2. Rietema K (1984) Powders, what are they? Powder Technol 37:5–23

    CAS  Google Scholar 

  3. Pingali KC et al (2009) Practical methods for improving flow properties of active pharmaceutical ingredients. Drug Dev Ind Pharm 35:1460–1469

    CAS  PubMed  Google Scholar 

  4. Faqih AMN et al (2007) Effect of moisture and magnesium stearate concentration on flow properties of cohesive granular materials. Int J Pharm 336:338–345

    CAS  PubMed  Google Scholar 

  5. Zhou Q et al (2011) Effect of mechanical dry particle coating on the improvement of powder flowability for lactose monohydrate: a model cohesive pharmaceutical powder. Powder Technol 207:414–421

    CAS  Google Scholar 

  6. Orband JLR, Geldart D (1995) The use of an antistatic agent to improve powder flowability. Part Part Syst Charact 12:204–206

    CAS  Google Scholar 

  7. Pingali KC et al (2009) Use of a static eliminator to improve powder flow. Int J Pharm 369:2–4

    CAS  PubMed  Google Scholar 

  8. Mullarney MP et al (2011) Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density. Powder Technol 212:397–402

    CAS  Google Scholar 

  9. Jallo LJ et al (2012) Improvement of flow and bulk density of pharmaceutical powders using surface modification. Int J Pharm 423:213–225

    CAS  PubMed  Google Scholar 

  10. Faqih AN et al (2007) A method for predicting hopper flow characteristics of pharmaceutical powders. Chem Eng Sci 62:1536–1542

    CAS  Google Scholar 

  11. Vanarase AU et al (2013) Effects of powder flow properties and shear environment on the performance of continuous mixing of pharmaceutical powders. Powder Technol 246:63–72

    CAS  Google Scholar 

  12. Bouffard J et al (2013) Experimental investigation of the effect of particle cohesion on the flow dynamics in a spheronizer. AIChE J 59:1491–1501

    CAS  Google Scholar 

  13. He X et al (2013) Assessing powder segregation potential by near infrared (NIR) spectroscopy and correlating segregation tendency to tabletting performance. Powder Technol 236:85–99

    CAS  Google Scholar 

  14. Podczeck F (1999) Rheological studies of physical properties of powder used in capsule filling I. Pharm Technol Eur 11:16–24

    CAS  Google Scholar 

  15. Podczeck F (1999) Rheological studies of physical properties of powder used in capsule filling II. Pharm Technol Eur 11:34–42

    CAS  Google Scholar 

  16. Nase ST et al (2001) Discrete characterization tools for cohesive granular material. Powder Technol 116:214–223

    CAS  Google Scholar 

  17. Alexander AW et al (2006) Avalanching flow of cohesive powders. Powder Technol 164:13–21

    CAS  Google Scholar 

  18. Faqih A et al (2006) An experimental/computational approach for examining unconfined cohesive powder flow. Int J Pharm 324:116–127

    CAS  PubMed  Google Scholar 

  19. Schulze D (2008) Powders and bulk solids: behavior, characterization, storage and flow. Springer, Berlin

    Google Scholar 

  20. Hancock BC et al (2004) Development of a Robust procedure for assessing powder flow using a commercial avalanche testing instrument. J Pharm Biomed Anal 35:12

    Google Scholar 

  21. Lee YSL et al (2000) Development of a dual approach to assess powder flow from avalanching behavior. AAPS PharmSciTech 1:44

    PubMed Central  Google Scholar 

  22. Krantz M et al (2009) Characterization of powder flow: static and dynamic testing. Powder Technol 194:239–245

    CAS  Google Scholar 

  23. Vasilenko A et al (2011) Shear and flow behavior of pharmaceutical blends – method comparison study. Powder Technol 208:628–636

    CAS  Google Scholar 

  24. Davies CE et al (2004) A new approach to monitoring the movement of particulate material in rotating drums. Dev Chem Eng Miner Process 12:263–275

    Google Scholar 

  25. Jenike AW (1964) Storage and flow of solids. Utah Eng Exp Stat Bull 123:1–194

    Google Scholar 

  26. Carson JW, Wilms H (2006) Development of an international standard for shear testing. Powder Technol 167:1–9

    CAS  Google Scholar 

  27. Berry RJ, Bradley MSA (2007) Investigation of the effect of test procedure factors on the failure loci and derived failure functions obtained from annular shear cells. Powder Technol 174:60–63

    CAS  Google Scholar 

  28. Pillai JR et al (2007) Comparison between the angles of wall friction measured on an on-line wall friction tester and the Jenike wall friction tester. Powder Technol 174:64–70

    CAS  Google Scholar 

  29. Abdullah EC, Geldart D (1999) The use of bulk density measurements as flowability indicators. Powder Technol 102:151–165

    CAS  Google Scholar 

  30. Grey RO, Beddow JK (1969) On the Hausner Ratio and its relationship to some properties of metal powders. Powder Technol 2:323–326

    Google Scholar 

  31. Rhodes M (2008) Introduction to particle technology, 2nd edn. John Wiley and Sons, West Sussex

    Google Scholar 

  32. Carr RL (1965) Evaluating flow properties of solids. Chem Eng 72:163–168

    CAS  Google Scholar 

  33. Hausner H (1967) Friction conditions in a massive metal powder. Int J Powder Metall 3:7

    Google Scholar 

  34. Freeman R (2007) Measuring the flow properties of consolidated, conditioned and aerated powders — a comparative study using a powder rheometer and a rotational shear cell. Powder Technol 174:25–33

    CAS  Google Scholar 

  35. Faqih A et al (2006) Flow - induced dilation of cohesive granular materials. AIChE J 52:4124–4132

    CAS  Google Scholar 

  36. Vasilenko A et al (2013) Role of consolidation state in the measurement of bulk density and cohesion. Powder Technol 239:366–373

    CAS  Google Scholar 

  37. Trivedi MR, Dave RH (2014) To study physical compatibility between dibasic calcium phosphate and cohesive actives using powder rheometer and thermal methods. Drug Dev Ind Pharm 40:1585

    CAS  Google Scholar 

  38. Bemrose CR, Bridgwater J (1987) A review of attrition and attrition test methods. Powder Technol 49:97–126

    CAS  Google Scholar 

  39. Lindberg N-O et al (2004) Flowability measurements of pharmaceutical powder mixtures with poor flow using five different techniques. Drug Dev Ind Pharm 30:785–791

    CAS  Google Scholar 

  40. Remon JP, Schwartz JB (1987) Effect of raw materials and processing on the quality of granules prepared from microcrystalline cellulose-lactose mixtures. Drug Dev Ind Pharm 13:1–14

    CAS  Google Scholar 

  41. Gohel MC, Jogani PD (2003) Exploration of melt granulation technique for the development of coprocessed directly compressible adjuvant containing lactose and microcrystalline cellulose. Pharm Dev Technol 8:175–185

    CAS  Google Scholar 

  42. Chevalier E et al (2009) Comparison of low-shear and high-shear granulation processes: effect on implantable calcium phosphate granule properties. Drug Dev Ind Pharm 35:1255–1263

    CAS  PubMed  Google Scholar 

  43. Freeman RE et al (2009) Measuring shear properties and normal stresses generated within a rotational shear cell for consolidated and non-consolidated powders. Powder Technol 190:65–69

    CAS  Google Scholar 

  44. Leturia M et al (2014) Characterization of flow properties of cohesive powders: a comparative study of traditional and new testing methods. Powder Technol 253:406–423

    CAS  Google Scholar 

  45. Mendez R et al (2012) Effect of feed frame design and operating parameters on powder attrition, particle breakage, and powder properties. Powder Technol 229:253–260

    CAS  Google Scholar 

  46. Prestidge CA, Tsatouhas G (2000) Wettability studies of morphine sulfate powders. Int J Pharm 198:201–212

    CAS  PubMed  Google Scholar 

  47. Llusa M et al (2010) Measuring the hydrophobicity of lubricated blends of pharmaceutical excipients. Powder Technol 198:101–107

    CAS  Google Scholar 

  48. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Google Scholar 

  49. Siebold A et al (1997) Capillary rise for thermodynamic characterization of solid particle surface. J Colloid Interface Sci 186:60–70

    CAS  PubMed  Google Scholar 

  50. Pingali K et al (2011) Evaluation of strain-induced hydrophobicity of pharmaceutical blends and its effect on drug release rate under multiple compression conditions. Drug Dev Ind Pharm 37:428–435

    CAS  PubMed  Google Scholar 

  51. Eilbeck J et al (2000) Effect of contamination of pharmaceutical equipment on powder triboelectrification. Int J Pharm 195:7–11

    CAS  PubMed  Google Scholar 

  52. Harper WR (1951) The Volta effect as a cause of static electrification. Proc Roy Soc Lond Ser A Math Phys Sci 205:83–103

    CAS  Google Scholar 

  53. Lowell J, Rose-Innes AC (1980) Contact electrification. Adv Phys 29:947–1023

    CAS  Google Scholar 

  54. Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Google Scholar 

  55. Matsusaka S, Masuda H (2003) Electrostatics of particles. Adv Powder Technol 14:143–166

    CAS  Google Scholar 

  56. Rowley G (2001) Quantifying electrostatic interactions in pharmaceutical solid systems. Int J Pharm 227:47–55

    CAS  PubMed  Google Scholar 

  57. Jones TB, King JL, Yablonsky JF (1991) Powder handling and electrostatics: understanding and preventing hazards. CRC Press, Boca Raton, FL

    Google Scholar 

  58. Pingali KC et al (2009) An observed correlation between flow and electrical properties of pharmaceutical blends. Powder Technol 192:157–165

    CAS  Google Scholar 

  59. Liss ED, Glasser BJ (2001) The influence of clusters on the stress in a sheared granular material. Powder Technol 116:116–132

    CAS  Google Scholar 

  60. Alexander A et al (2000) A method to quantitatively describe powder segregation during discharge from vessels. Pharmaceutical Technology Yearbook. Advanstar Communications, Inc., Santa Monica, CA

    Google Scholar 

  61. Prescott JK, Barnum RA (2000) On powder flowability. Pharm Technol 24:60–84

    CAS  Google Scholar 

  62. Schulze D (2008) Flow properties of bulk solids. In: Powders and bulk solids. Springer, New York, NY, pp 35–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando J. Muzzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Koynov, S., Muzzio, F.J. (2016). A Quantitative Approach to Understand Raw Material Variability. In: Ierapetritou, M.G., Ramachandran, R. (eds) Process Simulation and Data Modeling in Solid Oral Drug Development and Manufacture. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-2996-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2996-2_3

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-2995-5

  • Online ISBN: 978-1-4939-2996-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics