Skip to main content

Heat-Induced Fragmentation and Adapter-Assisted Whole Genome Amplification Using GenomePlex® Single-Cell Whole Genome Amplification Kit (WGA4)

  • Protocol
Whole Genome Amplification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1347))

Abstract

Whole genome amplification (WGA) is a widely used technique allowing multiplying picogram amounts of target DNA by several orders of magnitude. The technique described here is based on heat-induced random fragmentation yielding DNA strands mainly ranging from 0.1 to 1 kb in length. The fragmented DNA is then subjected to library generation by annealing of adaptor sequences to both ends of the DNA fragments. Using primers hybridizing to the adapter sequences, the DNA is amplified by thermal cycling. This amplification typically yields > 2 mg DNA from a single cell, is suited for amplifying DNA isolated from (partly) degraded samples [e.g. formalin-fixed paraffin-embedded (FFPE) material] and works well when used for array-comparative genome hybridization (array-CGH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucito R, Nakimura M, West JA, Han Y, Chin K, Jensen K, McCombie R, Gray JW, Wigler M (1998) Genetic analysis using genomic representations. Proc Natl Acad Sci U S A 95(8):4487–4492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Nelson DL, Ledbetter SA, Corbo L, Victoria MF, Ramirez-Solis R, Webster TD, Ledbetter DH, Caskey CT (1989) Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci U S A 86(17):6686–6690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13(3):718–725

    Article  CAS  PubMed  Google Scholar 

  4. Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A 89(13):5847–5851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dietmaier W, Hartmann A, Wallinger S, Heinmoller E, Kerner T, Endl E, Jauch KW, Hofstadter F, Ruschoff J (1999) Multiple mutation analyses in single tumor cells with improved whole genome amplification. Am J Pathol 154(1):83–95. doi:10.1016/S0002-9440(10)65254-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Heinmoller E, Schlake G, Renke B, Liu Q, Hill KA, Sommer SS, Ruschoff J (2002) Microdissection and molecular analysis of single cells or small cell clusters in pathology and diagnosis—significance and challenges. Anal Cell Pathol 24(4–5):125–134

    Article  CAS  PubMed  Google Scholar 

  7. Gribble S, Ng BL, Prigmore E, Burford DC, Carter NP (2004) Chromosome paints from single copies of chromosomes. Chromosome Res 12(2):143–151

    Article  CAS  PubMed  Google Scholar 

  8. Langmore JP (2002) Rubicon Genomics, Inc. Pharmacogenomics 3(4):557–560. doi:10.1517/14622416.3.4.557

    Article  PubMed  Google Scholar 

  9. Fiegler H, Geigl JB, Langer S, Rigler D, Porter K, Unger K, Carter NP, Speicher MR (2007) High resolution array-CGH analysis of single cells. Nucleic Acids Res 35(3), e15. doi:10.1093/nar/gkl1030

    Article  PubMed Central  PubMed  Google Scholar 

  10. Geigl JB, Obenauf AC, Waldispuehl-Geigl J, Hoffmann EM, Auer M, Hormann M, Fischer M, Trajanoski Z, Schenk MA, Baumbusch LO, Speicher MR (2009) Identification of small gains and losses in single cells after whole genome amplification on tiling oligo arrays. Nucleic Acids Res 37(15), e105. doi:10.1093/nar/gkp526

    Article  PubMed Central  PubMed  Google Scholar 

  11. Mathiesen RR, Fjelldal R, Liestol K, Due EU, Geigl JB, Riethdorf S, Borgen E, Rye IH, Schneider IJ, Obenauf AC, Mauermann O, Nilsen G, Christian Lingjaerde O, Borresen-Dale AL, Pantel K, Speicher MR, Naume B, Baumbusch LO (2012) High-resolution analyses of copy number changes in disseminated tumor cells of patients with breast cancer. Int J Cancer 131(4):E405–E415. doi:10.1002/ijc.26444

    Article  CAS  PubMed  Google Scholar 

  12. Magbanua MJ, Sosa EV, Roy R, Eisenbud LE, Scott JH, Olshen A, Pinkel D, Rugo HS, Park JW (2013) Genomic profiling of isolated circulating tumor cells from metastatic breast cancer patients. Cancer Res 73(1):30–40. doi:10.1158/0008-5472.CAN-11-3017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Magbanua MJ, Sosa EV, Scott JH, Simko J, Collins C, Pinkel D, Ryan CJ, Park JW (2012) Isolation and genomic analysis of circulating tumor cells from castration resistant metastatic prostate cancer. BMC Cancer 12:78. doi:10.1186/1471-2407-12-78

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gutierrez-Mateo C, Colls P, Sanchez-Garcia J, Escudero T, Prates R, Ketterson K, Wells D, Munne S (2011) Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil Steril 95(3):953–958. doi:10.1016/j.fertnstert.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  15. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94. doi:10.1038/nature09807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Heitzer E, Auer M, Gasch C, Pichler M, Ulz P, Hoffmann EM, Lax S, Waldispuehl-Geigl J, Mauermann O, Lackner C, Hofler G, Eisner F, Sill H, Samonigg H, Pantel K, Riethdorf S, Bauernhofer T, Geigl JB, Speicher MR (2013) Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 73(10):2965–2975. doi:10.1158/0008-5472.CAN-12-4140

    Article  CAS  PubMed  Google Scholar 

  17. El-Heliebi A, Kroneis T, Zohrer E, Haybaeck J, Fischereder K, Kampel-Kettner K, Zigeuner R, Pock H, Riedl R, Stauber R, Geigl JB, Huppertz B, Sedlmayr P, Lackner C (2013) Are morphological criteria sufficient for the identification of circulating tumor cells in renal cancer? J Transl Med 11:214. doi:10.1186/1479-5876-11-214

    Article  PubMed Central  PubMed  Google Scholar 

  18. El-Heliebi A, Kroneis T, Wagner K, Meditz K, Kolb D, Feichtinger J, Thallinger GG, Quehenberger F, Liegl-Atzwanger B, Rinner B (2014) Resolving tumor heterogeneity: genes involved in chordoma cell development identified by low-template analysis of morphologically distinct cells. PLoS One 9(2), e87663. doi:10.1371/journal.pone.0087663

    Article  PubMed Central  PubMed  Google Scholar 

  19. Maciejewska A, Jakubowska J, Pawlowski R (2013) Whole genome amplification of degraded and nondegraded DNA for forensic purposes. Int J Legal Med 127(2):309–319. doi:10.1007/s00414-012-0764-9

    Article  PubMed Central  PubMed  Google Scholar 

  20. Maciejewska A, Jakubowska J, Pawlowski R (2014) Different whole-genome amplification methods as a preamplification tool in Y-chromosome loci analysis. Am J Forensic Med Pathol 35(2):140–144. doi:10.1097/PAF.0000000000000093

    Article  PubMed  Google Scholar 

  21. Ballantyne KN, van Oorschot RA, Mitchell RJ (2007) Comparison of two whole genome amplification methods for STR genotyping of LCN and degraded DNA samples. Forensic Sci Int 166(1):35–41. doi:10.1016/j.forsciint.2006.03.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the EU SAFE Network of Excellence (LSHB-CT-2004-503243, EU 6th Framework Package) and the County of Styria, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kroneis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

El-Heliebi, A., Chen, S., Kroneis, T. (2015). Heat-Induced Fragmentation and Adapter-Assisted Whole Genome Amplification Using GenomePlex® Single-Cell Whole Genome Amplification Kit (WGA4). In: Kroneis, T. (eds) Whole Genome Amplification. Methods in Molecular Biology, vol 1347. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2990-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2990-0_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2989-4

  • Online ISBN: 978-1-4939-2990-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics