Skip to main content

Low-Volume On-Chip Single-Cell Whole Genome Amplification for Multiple Subsequent Analyses

  • Protocol
Whole Genome Amplification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1347))

Abstract

Multiple analyses such as DNA profiling, sequencing, or comparative genome hybridization (CGH) done on the single-cell level long for pre-amplification due to the diploid human genome. Isothermal whole genome amplification allows amplification of long DNA templates from single cells. When analysis needs to be performed under rare cell conditions additional care needs to be taken due to the fact that, even after pre-enrichment, few candidate target cells are still dispersed among an overwhelming number of non-target background cells. Here, we describe a protocol where we define a population of candidate target cells based on specific staining. Candidate cells are then isolated by laser microdissection and pressure catapulting (LMPC) and transferred onto a microliter reaction slide. This slide allows monitoring the single-cell isolation process and isothermal whole genome amplification in less than 2 μL. The amplification products obtained from single cells can be forwarded to multiple analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alix-Panabieres C, Pantel K (2014) Technologies for detection of circulating tumor cells: facts and vision. Lab Chip 14(1):57–62. doi:10.1039/c3lc50644d

    Article  CAS  PubMed  Google Scholar 

  2. Vona G, Beroud C, Benachi A, Quenette A, Bonnefont JP, Romana S, Dumez Y, Lacour B, Paterlini-Brechot P (2002) Enrichment, immunomorphological, and genetic characterization of fetal cells circulating in maternal blood. Am J Pathol 160(1):51–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Brechot C, Paterlini-Brechot P (2000) Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am J Pathol 156(1):57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. doi:10.1038/nature06385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Liu Z, Fusi A, Klopocki E, Schmittel A, Tinhofer I, Nonnenmacher A, Keilholz U (2011) Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J Transl Med 9:70. doi:10.1186/1479-5876-9-70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kroneis T, Gutstein-Abo L, Kofler K, Hartmann M, Hartmann P, Alunni-Fabbroni M, Walcher W, Dohr G, Petek E, Guetta E, Sedlmayr P (2010) Automatic retrieval of single microchimeric cells and verification of identity by on-chip multiplex PCR. J Cell Mol Med 14(4):954–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kroneis T, Geigl JB, El-Heliebi A, Auer M, Ulz P, Schwarzbraun T, Dohr G, Sedlmayr P (2011) Combined molecular genetic and cytogenetic analysis from single cells after isothermal whole-genome amplification. Clin Chem 57(7):1032–1041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang X (2011) Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11(20):3449–3457. doi:10.1039/c1lc20270g

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, Floyd FP Jr, Gilman AJ, Lord JB, Winokur D, Springer S, Irimia D, Nagrath S, Sequist LV, Lee RJ, Isselbacher KJ, Maheswaran S, Haber DA, Toner M (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 107(43):18392–18397. doi:10.1073/pnas.1012539107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Andreopoulou E, Yang LY, Rangel KM, Reuben JM, Hsu L, Krishnamurthy S, Valero V, Fritsche HA, Cristofanilli M (2012) Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest BreastCancer Select/Detect versus Veridex Cell Search system. Int J Cancer 130(7):1590–1597. doi:10.1002/ijc.26111

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Riethdorf S, Wu G, Wang T, Yang K, Peng G, Liu J, Pantel K (2012) Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res 18(20):5701–5710. doi:10.1158/1078-0432.ccr-12-1587

    Article  PubMed  Google Scholar 

  12. Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14(9):623–631. doi:10.1038/nrc3820

    Article  CAS  PubMed  Google Scholar 

  13. El-Heliebi A, Kroneis T, Zohrer E, Haybaeck J, Fischereder K, Kampel-Kettner K, Zigeuner R, Pock H, Riedl R, Stauber R, Geigl JB, Huppertz B, Sedlmayr P, Lackner C (2013) Are morphological criteria sufficient for the identification of circulating tumor cells in renal cancer? J Transl Med 11:214. doi:10.1186/1479-5876-11-214

    Article  PubMed Central  PubMed  Google Scholar 

  14. El-Heliebi A, Kroneis T, Wagner K, Meditz K, Kolb D, Feichtinger J, Thallinger GG, Quehenberger F, Liegl-Atzwanger B, Rinner B (2014) Resolving tumor heterogeneity: genes involved in chordoma cell development identified by low-template analysis of morphologically distinct cells. PLoS One 9(2), e87663. doi:10.1371/journal.pone.0087663

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the EU SAFE Network of Excellence (LSHB-CT-2004-503243, EU 6th Framework Package) and the County of Styria, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kroneis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kroneis, T., Chen, S., El-Heliebi, A. (2015). Low-Volume On-Chip Single-Cell Whole Genome Amplification for Multiple Subsequent Analyses. In: Kroneis, T. (eds) Whole Genome Amplification. Methods in Molecular Biology, vol 1347. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2990-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2990-0_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2989-4

  • Online ISBN: 978-1-4939-2990-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics