Skip to main content

A Microfluidic Device for Immunoassay-Based Protein Analysis of Single E. coli Bacteria

  • Protocol
Single Cell Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1346))

Abstract

We present a method suitable for quantitative analysis of intracellular proteins, metabolites and secondary messengers of single bacterial cells. The method integrates the concept of immunoassays on a microfluidic device that facilitates single cell trapping and isolating in a small volume of a few tens of picoliters. Combination of the benefits of microfluidic systems for single cell analysis with the high analytical selectivity and sensitivity of immunoassays enables the detection of even low abundant intracellular analytes which occur only at a few hundred copies per bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaern M, Elston TC, Blake WJ et al (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–464

    Article  CAS  PubMed  Google Scholar 

  2. Ito Y, Toyota H, Kaneko K et al (2009) How selection affects phenotypic fluctuation. Mol Syst Biol 5:1–7

    Article  Google Scholar 

  3. Munsky B, Neuert G, Van Oudenaarden A (2012) Using gene expression noise to understand gene regulation. Science 336:183–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Viney M, Reece SE (2013) Adaptive noise. Proc R Soc B 280:1–9

    Article  Google Scholar 

  5. Hunt BG, Ometto L, Keller L et al (2013) Evolution at two levels in fire ants: the relationship between patterns of gene expression and protein sequence evolution. Mol Biol Evol 30:263–271

    Article  CAS  PubMed  Google Scholar 

  6. Taniguchi Y, Choi PJ, Li GW, Chen H et al (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mazumder A, Tummler K, Bathe M et al (2013) Single-cell analysis of ribonucleotide reductase transcriptional and translational response to DNA damage. Mol Cell Biol 33:635–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218

    Article  CAS  PubMed  Google Scholar 

  9. Klepárník K, Foret F (2013) Recent advances in the development of single cell analysis—a review. Anal Chim Acta 800:12–21

    Article  PubMed  Google Scholar 

  10. Kovarik ML, Gach PC, Orno DM et al (2012) Micro total analysis systems for cell biology and biochemical assays. Anal Chem 84:516–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zhang Y, Ozdemir P (2009) Microfluidic DNA amplification—a review. Anal Chim Acta 638:115–125

    Article  CAS  PubMed  Google Scholar 

  12. Lounsbury JA, Karlsson A, Miranian DC et al (2013) From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis. Lab Chip 13:1384–1393

    Article  CAS  PubMed  Google Scholar 

  13. Chang CM, Chang WH, Wang CH et al (2013) Nucleic acid amplification using microfluidic systems. Lab Chip 13:1225–1242

    Article  CAS  PubMed  Google Scholar 

  14. Wu M, Singh AK (2012) Single-cell protein analysis. Curr Opin Biotechnol 23:83–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Eyer K, Stratz S, Dittrich PS et al (2013) Implementing enzyme-linked immunosorbent assays on a microfluidic chip to quantify intracellular molecules in single cells. Anal Chem 85:3280–3287

    Google Scholar 

  17. Eyer K, Kuhn P, Dittrich PS et al (2012) A microchamber array for single cell isolation and analysis of intracellular biomolecules. Lab Chip 12:765–772

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Zhang B, Feng H et al (2012) An automated microfluidic device for assessment of mammalian cell genetic stability. Lab Chip 12:3930–3935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Leung K, Zahn H, Leaver T et al (2012) A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci U S A 109:7665–7670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kim M, Isenberg BC, Sutin J et al (2011) Programmed trapping of individual bacteria using micrometer-size sieves. Lab Chip 11:1089–1095

    Article  CAS  PubMed  Google Scholar 

  21. He M, Edgar JS, Jeffries GD et al (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544

    Article  CAS  PubMed  Google Scholar 

  22. Stratz S, Eyer K, Kurth F, Dittrich PS (2014) On-chip enzyme quantification of single Escherichia coli bacteria by immunoassay-based analysis. Anal Chem 86: 12375–12381

    Google Scholar 

  23. Berg JM, Tymoczko JL, Stryer L (2002) The Michaelis-Menten model accounts for the kinetic properties of many enzymes. In: Freeman WH (ed) Biochemistry, 5th edn. Freeman W. H. and Company, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra S. Dittrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stratz, S., Dittrich, P.S. (2015). A Microfluidic Device for Immunoassay-Based Protein Analysis of Single E. coli Bacteria. In: Singh, A., Chandrasekaran, A. (eds) Single Cell Protein Analysis. Methods in Molecular Biology, vol 1346. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2987-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2987-0_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2986-3

  • Online ISBN: 978-1-4939-2987-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics