Skip to main content

Dynamics and Interactions of Individual Proteins in the Membrane of Single, Living Cells

  • Protocol
Single Cell Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1346))

Abstract

Total internal reflection fluorescence (TIRF) microscopy is a powerful technique for interrogating protein dynamics in the membranes of living single cells. Receptor–ligand interactions are of particular interest for improving our understanding of cell signaling networks in a variety of applications. Here, we describe methods for fluorescently labeling individual receptors and their ligands, conducting single-molecule TIRF microscopy of receptors and ligands in single, living cells, and importantly, performing image analysis on the resulting time sequence of images to extract quantitative dynamics. While we use Toll-like receptor 4 and its ligand lipopolysaccharide as a specific example, the methods are general and readily extendable to other receptor–ligand systems of importance in cellular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu M, Singh AK (2012) Single-cell protein analysis. Curr Opin Biotechnol 23(1):83–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Giepmans BNG, Adams SR, Ellisman MH et al (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224

    Article  CAS  PubMed  Google Scholar 

  3. Osafune T, Schwartzbach S (2007) Intracellular protein localization by immunoelectron microscopy. In: van der Giezen M (ed) Protein targeting protocols, vol 390, Methods in Molecular Biology™. Humana, New York, NY, pp 407–416

    Chapter  Google Scholar 

  4. Cognet L, Leduc C, Lounis B (2014) Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Curr Opin Chem Biol 20:78–85

    Article  CAS  PubMed  Google Scholar 

  5. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11):764–774

    Article  CAS  PubMed  Google Scholar 

  6. Anantharam A, Onoa B, Edwards RH et al (2010) Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM. J Cell Biol 188(3):415–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Martinière A, Lavagi I, Nageswaran G et al (2012) Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci 109(31):12805–12810

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mashanov, GI, Molloy, JE (2007) Automatic detection of single fluorophores in live cells. Biophys J 92: 2199–2211

    Google Scholar 

  9. Weigel AV, Tamkun MM, Krapf D (2013) Quantifying the dynamic interactions between a clathrin-coated pit and cargo molecules. Proc Natl Acad Sci 110(48):E4591–E4600

    Google Scholar 

  10. Spendier K, Carroll-Portillo A, Lidke K et al (2010) Distribution and dynamics of RBL IgE receptors (Fc∑RI) observed on planar ligand-presenting surfaces. Biophys J 99:388–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Carroll-Portillo A, Spendier K, Pfeiffer J et al (2010) Formation of a mast cell synapse: FcεRI membrane dynamics upon binding mobile or immobilized ligands on surfaces. J Immunol 184(3):1328–1338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Aaron JS, Greene A, Kotula PG et al (2011) Advanced optical imaging reveals dependence of particle geometry on interactions between CdSe quantum dots and immune cells. Small 7(3):334–341

    Article  CAS  PubMed  Google Scholar 

  13. Aaron JS, Carson BD, Timlin JA (2012) Characterization of differential Toll-like receptor responses below the optical diffraction limit. Small 8(19):3041–3049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Shawkat S, Karima R, Tojo T et al (2008) Visualization of the molecular dynamics of lipopolysaccharide on the plasma membrane of murine macrophages by total internal reflection fluorescence microscopy. J Biol Chem 283(34):22962–22971

    Article  CAS  PubMed  Google Scholar 

  15. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21(1):335–376

    Article  CAS  PubMed  Google Scholar 

  16. Pålsson-McDermott EM, O’Neill LAJ (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113(2):153–162

    Article  PubMed Central  PubMed  Google Scholar 

  17. Jaiswal JK, Goldman ER, Mattoussi H et al (2004) Use of quantum dots for live cell imaging. Nat Methods 1(1):73–78

    Article  PubMed  Google Scholar 

  18. Triantafilou K, Triantafilou M, Fernandez N (2000) Lipopolysaccharide (LPS) labeled with Alexa 488 hydrazide as a novel probe for LPS binding studies. Cytometry 41(4):316–320

    Article  CAS  PubMed  Google Scholar 

  19. Sun MMC, Beam KS, Cerveny CG et al (2005) Reduction−alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 16(5):1282–1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lee C-H, Tsai C-M (1999) Quantification of bacterial lipopolysaccharides by the purpald assay: measuring formaldehyde generated from 2-keto-3-deoxyoctonate and heptose at the inner core by periodate oxidation. Anal Biochem 267(1):161–168

    Article  CAS  PubMed  Google Scholar 

  21. Andrews NL, Lidke KA, Pfeiffer JR et al (2008) Actin restricts Fc[epsiv]RI diffusion and facilitates antigen-induced receptor immobilization. Nat Cell Biol 10(8):955–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lidke KA, Reiger B, Lidke DS et al (2005) The role of photon statistics in fluorescence anisotropy imaging. IEEE Trans Image Process 14(9):1237–1245

    Article  PubMed  Google Scholar 

  23. Olivo-Marin JC (2002) Extraction of spots in biological images using multiscale products. Pattern Recogn 35(9):1989–1996

    Article  Google Scholar 

  24. Izeddin I, Boulanger J, Racine V et al (2012) Wavelet analysis for single molecule localization microscopy. Opt Express 20(3):2081–2095

    Article  CAS  PubMed  Google Scholar 

  25. Weeks AR (1996) Fundamentals of electronic image processing, SPIE/IEEE series on imaging science & engineering. SPIE Optical Engineering Press; IEEE Press, Bellingham, WA; New York, NY

    Book  Google Scholar 

  26. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179(1):298–310

    Article  CAS  Google Scholar 

  27. Sadler BM, Swami A (1999) Analysis of multiscale products for step detection and estimation. IEEE Trans Inform Theor 45(3):1043–1051

    Article  Google Scholar 

  28. Anthony SM, Granick S (2009) Image analysis with rapid and accurate two-dimensional gaussian fitting. Langmuir 25(14):8152–8160

    Article  CAS  PubMed  Google Scholar 

  29. Smith CS, Joseph N, Rieger B et al (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–U352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ober RJ, Ram S, Ward ES (2004) Localization accuracy in single-molecule microscopy. Biophys J 86(2):1185–1200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Single molecule localization microscopy. http://bigwww.epfl.ch/smlm/. Accessed August 26 2014

  32. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200

    Article  PubMed  Google Scholar 

  33. Smal I, Loog M, Niessen W et al (2010) Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE Trans Med Imag 29(2):282–301

    Article  Google Scholar 

  34. Dennis AM, Mangum BD, Piryatinski A et al (2012) Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots. Nano Lett 12(11):5545–5551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Jonker R, Volgenant A (1987) A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4):325–340

    Article  Google Scholar 

  36. Jonker R, Volgenant A (1999) Linear assignment procedures. Eur J Oper Res 116(1):233–234

    Article  Google Scholar 

  37. Cao Y. LAPJV – Jonker-Volgenant algorithm for linear assignment problem V3.0. http://www.mathworks.com/matlabcentral/fileexchange/26836-lapjv-jonker-volgenant-algorithm-for-linear-assignment-problem-v3-0. Accessed August 26 2014

  38. Jaqaman K, Loerke D, Mettlen M et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5(8):695–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Institutes of Health Director’s New Innovator Award Program, 1-DP2-OD006673-01 (probe development and experiments), as well as the Department of Energy’s Laboratory Directed Research and Development (LDRD) program (compilation and writing). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerilyn Timlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Anthony, S., Carroll-Portillo, A., Timlin, J. (2015). Dynamics and Interactions of Individual Proteins in the Membrane of Single, Living Cells. In: Singh, A., Chandrasekaran, A. (eds) Single Cell Protein Analysis. Methods in Molecular Biology, vol 1346. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2987-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2987-0_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2986-3

  • Online ISBN: 978-1-4939-2987-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics