Skip to main content

Detection of Helical Intermediates During Amyloid Formation by Intrinsically Disordered Polypeptides and Proteins

  • Protocol
Protein Amyloid Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1345))

Abstract

Amyloid formation and aberrant protein aggregation are hallmarks of more than 30 different human diseases. The proteins that form amyloid can be divided into two structural classes: those that form compact, well-ordered, globular structures in their unaggregated state and those that are intrinsically disordered in their unaggregated states. The latter include the Aβ peptide of Alzheimer’s disease, islet amyloid polypeptide (IAPP, amylin) implicated in type 2 diabetes and α-synuclein, which is linked to Parkinson’s disease. Work in the last 10 years has highlighted the potential role of pre-amyloid intermediates in cytotoxicity and has focused attention on their properties. A number of intrinsically disordered proteins appear to form helical intermediates during amyloid formation. We discuss the spectroscopic methods employed to detect and characterize helical intermediates in homogenous solution and in membrane-catalyzed amyloid formation, with the emphasis on the application of circular dichroism (CD). IAPP is used as an example, but the methods are generally applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    Article  CAS  PubMed  Google Scholar 

  2. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  3. Sipe JD (1994) Amyloidosis. Crit Rev Clin Lab Sci 31:325–354

    Article  CAS  PubMed  Google Scholar 

  4. Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826

    Article  CAS  PubMed  Google Scholar 

  5. Abedini A, Raleigh DP (2009) A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides. Protein Eng Design Select 22:453–459

    Article  CAS  Google Scholar 

  6. Taskent-Sezgin H, Marek P, Thomas R, Goldberg D, Chung J, Carrico I, Raleigh DP (2010) Modulation of p-cyanophenylalanine fluorescence by amino acid sidechains and rational design of fluorescence probes of a-helix formation. Biochemistry 49:6290–6295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Shim S-H, Gupta R, Ling YL, Strasfeld DB, Raleigh DP, Zanni MT (2009) 2DIR spectroscopy defines the pathway of amyloid formation with residue specific resolution. Proc Natl Acad Sci U S A 106:6614–6619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lukinius A, Wilander E, Westermark GT, Engstrom U, Westermark P (1989) Co-localization of islet amyloid polypeptide and insulin in the beta-cell secretory granules of the human pancreatic-islets. Diabetologia 32:240–244

    Article  CAS  PubMed  Google Scholar 

  9. Kahn SE, Dalessio DA, Schwartz MW, Fujimoto WY, Ensinck JW, Taborsky GJ, Porte D (1990) Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells. Diabetes 39:634–638

    Article  CAS  PubMed  Google Scholar 

  10. Stridsberg M, Sandler S, Wilander E (1993) Cosecretion of islet amyloid polypeptide (IAPP) and insulin from isolated rat pancreatic-islets following stimulation or inhibition of beta-cell Function. Regul Pept 45:363–370

    Article  CAS  PubMed  Google Scholar 

  11. Clark A, Wells CA, Buley ID, Cruickshank JK, Vanhegan RI, Matthews DR, Cooper GJS, Holman RR, Turner RC (1988) Islet amyloid, increased alpha-cells, reduced beta-cells and exocrine fibrosis – quantitative changes in the pancreas in type-2 diabetes. Diabetes Res 9:151–159

    CAS  PubMed  Google Scholar 

  12. Lorenzo A, Razzaboni B, Weir GC, Yankner BA (1994) Pancreatic-islet cell toxicity of amylin associated with type-2 diabetes-mellitus. Nature 368:756–760

    Article  CAS  PubMed  Google Scholar 

  13. Konarkowska B, Aitken JF, Kistler J, Zhang S, Cooper GJ (2006) The aggregation potential of human amylin determines its cytotoxicity towards islet beta-cells. FEBS J 273:3614–3624

    Article  CAS  PubMed  Google Scholar 

  14. Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP (2013) Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 587:1106–1118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hebda JA, Miranker AD (2009) The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Annu Rev Biophys 38:125–152

    Article  CAS  PubMed  Google Scholar 

  16. Cao P, Abedini A, Wang H, Tu LH, Zhang XX, Schmidt AM, Raleigh DP (2013) Islet amyloid polypeptide toxicity and membrane interactions. Proc Natl Acad Sci U S A 110:19279–19284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Dunkelberger EB, Buchanan LE, Marek P, Cao P, Raleigh DP, Zanni MT (2012) Deamidation accelerates amyloid formation and alters amylin fiber structure. J Am Chem Soc 134:12658–12667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Marek P, Pastalo V, Green D, Raleigh DP (2012) Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. Biochemistry 51:8478–8490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Stewart JCM (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14

    Article  CAS  PubMed  Google Scholar 

  20. Williamson JA, Miranker AD (2007) Direct detection of transient alpha-helical states in islet amyloid polypeptide. Protein Sci 16:110–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Manning MC, Woody RW (1991) Theoretical CD studies of polypeptide helices-examination of important electronic and geometric factors. Biopolymers 31:569–586

    Article  CAS  PubMed  Google Scholar 

  22. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  PubMed  Google Scholar 

  23. Scholtz JM, Baldwin RL (1992) Ann Rev Biophys Biomol Struct 21:95–118

    Article  CAS  Google Scholar 

  24. Ling YL, Strasfeld DB, Shim SH, Raleigh DP, Zanni MT (2009) Two-dimensional infrared spectroscopy provides evidence of an intermediate in the membrane-catalyzed assembly of diabetic amyloid. J Phys Chem B 113:2498–2505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Abedini A, Singh G, Raleigh DP (2006) Recovery and purification of highly aggregation-prone disulfide-containing peptides: application to islet amyloid polypeptide. Anal Biochem 351:181–186

    Article  CAS  PubMed  Google Scholar 

  26. Nilsson MR, Raleigh DP (1999) Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin. J Mol Biol 294:1375–1385

    Article  CAS  PubMed  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  28. Zor T, Selinger Z (1996) Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 236:302–308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants 1F32DK089734-02 (A.A.) and GM078114 (D.P.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andisheh Abedini or Daniel P. Raleigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Abedini, A., Cao, P., Raleigh, D.P. (2016). Detection of Helical Intermediates During Amyloid Formation by Intrinsically Disordered Polypeptides and Proteins. In: Eliezer, D. (eds) Protein Amyloid Aggregation. Methods in Molecular Biology, vol 1345. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2978-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2978-8_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2977-1

  • Online ISBN: 978-1-4939-2978-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics