Skip to main content

Preparation of Crystalline Samples of Amyloid Fibrils and Oligomers

  • Protocol
Protein Amyloid Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1345))

Abstract

The molecular structures of amyloid fibers and oligomers are required in order to understand and control their formation. Yet, their partially disordered and polymorphic nature hinders structural analyses. Fortunately, short segments from amyloid proteins, which exhibit similar biophysical properties to the full-length proteins, also form fibrils and oligomers and their atomic structures can be determined. Here we describe experimental procedures used to assess fiber-forming capabilities of amyloid peptide segments and their crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gazit E (2005) Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool. FEBS J 272:5971–5978

    Article  CAS  PubMed  Google Scholar 

  2. Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98

    Article  CAS  PubMed  Google Scholar 

  3. Sunde M, Serpell LC, Bartlam M et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739

    Article  CAS  PubMed  Google Scholar 

  4. Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci U S A 98:2375–2380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ivanova MI, Thompson MJ, Eisenberg D (2006) A systematic screen of beta(2)-microglobulin and insulin for amyloid-like segments. Proc Natl Acad Sci U S A 103:4079–4082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Thompson MJ, Sievers SA, Karanicolas J et al (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103:4074–4078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    Article  CAS  PubMed  Google Scholar 

  9. Wiltzius JJ, Sievers SA, Sawaya MR et al (2008) Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin). Protein Sci 17:1467–1474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ivanova MI, Sievers SA, Sawaya MR et al (2009) Molecular basis for insulin fibril assembly. Proc Natl Acad Sci U S A 106:18990–18995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wiltzius JJ, Landau M, Nelson R et al (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 16:973–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wiltzius JJ, Sievers SA, Sawaya MR et al (2009) Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Sci 18:1521–1530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Laganowsky A, Benesch JL, Landau M et al (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Apostol MI, Wiltzius JJ, Sawaya MR et al (2011) Atomic structures suggest determinants of transmission barriers in mammalian prion disease. Biochemistry 50:2456–2463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Colletier JP, Laganowsky A, Landau M et al (2011) Molecular basis for amyloid-beta polymorphism. Proc Natl Acad Sci U S A 108:16938–16943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Liu C, Zhao M, Jiang L et al (2012) Out-of-register beta-sheets suggest a pathway to toxic amyloid aggregates. Proc Natl Acad Sci U S A 109:20913–20918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Landau M, Sawaya MR, Faull KF et al (2011) Towards a pharmacophore for amyloid. PLoS Biol 9:e1001080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nelson R, Eisenberg D (2006) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16:260–265

    Article  CAS  PubMed  Google Scholar 

  19. Nelson R, Eisenberg D (2006) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282

    Article  CAS  PubMed  Google Scholar 

  20. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Laganowsky A, Liu C, Sawaya MR et al (2012) Atomic view of a toxic amyloid small oligomer. Science 335:1228–1231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Goldschmidt L, Teng PK, Riek R et al (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 107:3487–3492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ivanova MI, Sievers SA, Guenther EL et al (2014) Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proc Natl Acad Sci U S A 111:197–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J et al (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306

    Article  CAS  PubMed  Google Scholar 

  25. Maurer-Stroh S, Debulpaep M, Kuemmerer N et al (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7:237–242

    Article  CAS  PubMed  Google Scholar 

  26. Tartaglia GG, Pawar AP, Campioni S et al (2008) Prediction of aggregation-prone regions in structured proteins. J Mol Biol 380:425–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our coworkers for their contributions to development of these methods, and NIH (AG029430 & SG04812), DOE (DE-FC02-02ER63421), and NSF (MCB-0958111) for support. DE and ML thank the U.S.-Israel Binational Science Foundation (BSF). ML thanks the Alon Fellowship from the Israeli Council for Higher Education, the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation, Center of Excellence in Integrated Structural Cell Biology; Grant No 1775/12, the Support for training and career development of researchers (Marie Curie) CIG, Seventh framework program, Single Benefi ciary, the J. and A. Taub Biological Research Fund, and the David and Inez Mayers Career Advancement Chair in Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eisenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moshe, A., Landau, M., Eisenberg, D. (2016). Preparation of Crystalline Samples of Amyloid Fibrils and Oligomers. In: Eliezer, D. (eds) Protein Amyloid Aggregation. Methods in Molecular Biology, vol 1345. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2978-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2978-8_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2977-1

  • Online ISBN: 978-1-4939-2978-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics