Skip to main content

Quantitative Real-Time PCR Analysis of MicroRNAs and Their Precursors Regulated by TGF-β Signaling

  • Protocol
TGF-β Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1344))

Abstract

The signaling pathway of TGF-β and its family member BMP has been implicated in vascular development and maintenance of homeostasis by modulating expression of small noncoding microRNAs (miRNAs). MiRNAs repress target genes, which play a critical role in regulating vascular smooth muscle cell (VSMC) growth, phenotype, and function. To understand the mechanisms by which specific miRNAs control the TGF-β and BMP signaling pathway in VSMC, it is essential to quantitate levels of specific miRNAs and their precursors whose expression are controlled by TGF-β/BMP signaling. Here, we describe a real-time quantization method for accurate and sensitive detection of miRNAs and their precursors, such as primary transcripts of miRNAs (pri-miRNAs) and precursor miRNAs (pre-miRNAs). This method requires two steps; synthesis of single-stranded complementary DNAs (cDNAs) from total RNA samples and quantization of specific pri-, pre-, or mature miRNAs by quantitative polymerase chain reaction (PCR) using a real-time PCR machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13:616–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8:857–869

    Article  PubMed  Google Scholar 

  3. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hata A. Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol 75:69–93

    Google Scholar 

  5. Kang H, Hata A. (2012) MicroRNA regulation of smooth muscle gene expression and phenotype. Curr Opin Hematol 19:224–231

    Google Scholar 

  6. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39:373–384

    Google Scholar 

  7. Kang H, Davis-Dusenbery BN, Nguyen PH, Lal A, Lieberman J et al. (2012) Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins. J Biol Chem 287:3976–3986

    Google Scholar 

  8. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    Article  CAS  PubMed  Google Scholar 

  9. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    Article  CAS  PubMed  Google Scholar 

  10. Han J, Lee Y, Yeom KH, Nam JW, Heo I et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  CAS  PubMed  Google Scholar 

  11. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  CAS  PubMed  Google Scholar 

  12. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Piriyapongsa J, Jordan IK, Conley AB, Ronan T, Smalheiser NR (2011) Transcription factor binding sites are highly enriched within microRNA precursor sequences. Biol Direct 6:61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S et al (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32, e175

    Article  PubMed Central  PubMed  Google Scholar 

  15. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A et al. (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684

    Google Scholar 

  16. Wu Q, Lu Z, Li H, Lu J, Guo L et al (2011) Next-generation sequencing of microRNAs for breast cancer detection. J Biomed Biotechnol 2011: 597145

    Google Scholar 

  17. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33, e179

    Article  PubMed Central  PubMed  Google Scholar 

  18. Benes V, Castoldi M. (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244–249

    Google Scholar 

  19. Kang H, Louie J, Weisman A, Sheu-Gruttadauria J, Davis-Dusenbery BN et al. (2012) Inhibition of microRNA-302 (miR-302) by bone morphogenetic protein 4 (BMP4) facilitates the BMP signaling pathway. J Biol Chem 287:38656–38664

    Google Scholar 

Download references

Acknowledgement

We thank members of the Hata lab in particular Matt Blahna for critical reading of the manuscript. This work was supported by grants from the National Institute of Health: HL093154 and HL108317, the American Heart Association: 0940095N and the LeDucq foundation Transatlantic network grant to A.H. and the National Research Foundation of Korea (Basic Science Research Program; 2012R1A1A1042812) to H.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Hata Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kang, H., Hata, A. (2016). Quantitative Real-Time PCR Analysis of MicroRNAs and Their Precursors Regulated by TGF-β Signaling. In: Feng, XH., Xu, P., Lin, X. (eds) TGF-β Signaling. Methods in Molecular Biology, vol 1344. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2966-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2966-5_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2965-8

  • Online ISBN: 978-1-4939-2966-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics