Skip to main content

Detection of Smad Signaling in Zebrafish Embryos

  • Protocol
TGF-β Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1344))

Abstract

Nodal and BMPs play critical roles in germ layer induction and patterning in early zebrafish embryos. Smad2/3 and Smad1/5/8 are intracellular effectors of Nodal and BMPs, respectively. These Smads regulate, in cooperation with other factors, transcription of hundreds of target genes in the nucleus. The activity and stability of Smads are regulated by phosphorylation modifications. To better understand the regulatory network of Smads-mediated signaling and its biological implications, it is necessary to monitor the signaling activity in an in vivo model system. In this chapter, we describe the methods used in zebrafish embryos for dissecting Smads signaling, including TGF-β/Nodal- and BMP-responsive luciferase reporter assays, Western blotting for Smads, co-immunoprecipitation for Smads and their interacting proteins, chromatin-immunoprecipitation for identification of Smad2-binding sites, and immunostaining for detection of active Smad1/5/8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tian T, Meng AM (2006) Nodal signals pattern vertebrate embryos. Cell Mol Life Sci 63(6):672–685

    Article  CAS  PubMed  Google Scholar 

  2. Langdon YG, Mullins MC (2011) Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu Rev Genet 45:357–377

    Article  CAS  PubMed  Google Scholar 

  3. Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI et al (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395(6698):181–185

    Article  CAS  PubMed  Google Scholar 

  4. Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF (1999) The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97(1):121–132

    Article  CAS  PubMed  Google Scholar 

  5. Gritsman K, Talbot WS, Schier AF (2000) Nodal signaling patterns the organizer. Development 127(5):921–932

    CAS  PubMed  Google Scholar 

  6. Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS (2003) The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130(9):1837–1851

    Article  CAS  PubMed  Google Scholar 

  7. De Robertis EM, Kuroda H (2004) Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20:285–308, PMCID: 2280069

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kishimoto Y, Lee KH, Zon L, Hammerschmidt M, Schulte-Merker S (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124(22):4457–4466

    CAS  PubMed  Google Scholar 

  9. Dick A, Hild M, Bauer H, Imai Y, Maifeld H, Schier AF et al (2000) Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development 127(2):343–354

    CAS  PubMed  Google Scholar 

  10. Schmid B, Furthauer M, Connors SA, Trout J, Thisse B, Thisse C et al (2000) Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127(5):957–967

    CAS  PubMed  Google Scholar 

  11. Schmierer B, Hill CS (2007) TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8(12):970–982

    Article  CAS  PubMed  Google Scholar 

  12. Liu Z, Lin X, Cai Z, Zhang Z, Han C, Jia S et al (2011) Global identification of SMAD2 target genes reveals a role for multiple co-regulatory factors in zebrafish early gastrulas. J Biol Chem 286(32):28520–28532, PMCID: 3151094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J et al (2006) PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 125(5):915–928

    Article  CAS  PubMed  Google Scholar 

  14. Duan X, Liang YY, Feng XH, Lin X (2006) Protein serine/threonine phosphatase PPM1A dephosphorylates Smad1 in the bone morphogenetic protein signaling pathway. J Biol Chem 281(48):36526–36532

    Article  CAS  PubMed  Google Scholar 

  15. Wrighton KH, Lin X, Feng XH (2009) Phospho-control of TGF-beta superfamily signaling. Cell Res 19(1):8–20, PMCID: 2929013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17(11):3091–3100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Korchynskyi O, ten Dijke P (2002) Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277(7):4883–4891

    Article  CAS  PubMed  Google Scholar 

  18. Huang HC, Murtaugh LC, Vize PD, Whitman M (1995) Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J 14(23):5965–5973

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Meng A, Jessen JR, Lin S (1999) Transgenesis. Methods Cell Biol 60:133–148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from Major Science Programs of China (#2011CB943800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anming Meng Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, X., Wang, Q., Meng, A. (2016). Detection of Smad Signaling in Zebrafish Embryos. In: Feng, XH., Xu, P., Lin, X. (eds) TGF-β Signaling. Methods in Molecular Biology, vol 1344. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2966-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2966-5_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2965-8

  • Online ISBN: 978-1-4939-2966-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics