Skip to main content

Imaging TGFβ Signaling in Mouse Models of Cancer Metastasis

  • Protocol
TGF-β Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1344))

Abstract

Metastatic spread of cancer cells from the primary tumors to distant vital organs, such as lung, liver, brain, and bone, is responsible for the majority of cancer-related deaths. Development of metastatic lesions is critically dependent on the interaction of tumor cells with the stromal microenvironment. As a multifunctional paracrine signaling factor that is abundantly produced by both tumor and stromal cells, TGFβ has been well established as an important mediator of tumor–stromal interaction during cancer metastasis. Imaging the in vivo dynamic of TGFβ signaling activity during cancer metastasis is critical for understanding the pathogenesis of the disease, and for the development of effective anti-metastasis treatments. In this chapter, I describe several xenograft methods to introduce human breast cancer cells into nude mice in order to generate spontaneous and experimental metastases, as well as the luciferase-based bioluminescence imaging method for quantitative imaging analysis of TGFβ signaling in tumor cells during metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  2. Kang Y (2005) Functional genomic analysis of cancer metastasis: biologic insights and clinical implications. Expert Rev Mol Diagn 5(3):385–395

    Article  CAS  PubMed  Google Scholar 

  3. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  CAS  PubMed  Google Scholar 

  4. Sethi N, Kang Y (2011) Unravelling the complexity of metastasis—molecular understanding and targeted therapies. Nat Rev Cancer 11(10):735–748

    Article  CAS  PubMed  Google Scholar 

  5. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292, PMCID: 3261217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  8. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6(7):506–520

    Article  CAS  PubMed  Google Scholar 

  10. Kang Y (2006) Pro-metastasis function of TGFbeta mediated by the Smad pathway. J Cell Biochem 98(6):1380–1390

    Article  CAS  PubMed  Google Scholar 

  11. Yin JJ (1999) TGF-[beta] signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR et al (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133(1):66–77, PMCID: 2390892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR et al (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A 102(39):13909–13914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM et al (2006) Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 25(24):3408–3423

    Article  CAS  PubMed  Google Scholar 

  15. Massague J (2008) TGFbeta in Cancer. Cell 134(2):215–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Korpal M, Yan J, Lu X, Xu S, Lerit DA, Kang Y (2009) Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 15(8):960–966

    Article  CAS  PubMed  Google Scholar 

  17. Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192–205, PMCID: 3040415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV et al (2012) Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22(5):571–584, PMCID: 3512565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yingling JM, Blanchard KL, Sawyer JS (2004) Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 3(12):1011–1022

    Article  CAS  PubMed  Google Scholar 

  20. Dumont N, Arteaga CL (2003) Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3(6):531–536

    Article  CAS  PubMed  Google Scholar 

  21. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20(5):576–590, PMCID: 3487108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pfeilschifter J, Mundy GR (1987) Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci U S A 84(7):2024–2028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Dallas SL, Rosser JL, Mundy GR, Bonewald LF (2002) Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 277(24):21352–21360

    Article  CAS  PubMed  Google Scholar 

  24. Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4(2):245–247

    Article  CAS  PubMed  Google Scholar 

  25. Gelovani Tjuvajev J, Blasberg RG (2003) In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 3(4):327–332

    Article  PubMed  Google Scholar 

  26. Gross S, Piwnica-Worms D (2005) Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7(1):5–15

    CAS  PubMed  Google Scholar 

  27. Jenkins DE, Oei Y, Hornig YS, Yu SF, Dusich J, Purchio T et al (2003) Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis 20(8):733–744

    Article  CAS  PubMed  Google Scholar 

  28. Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2(1):11–18

    Article  CAS  PubMed  Google Scholar 

  29. Luker GD, Pica CM, Song J, Luker KE, Piwnica-Worms D (2003) Imaging 26S proteasome activity and inhibition in living mice. Nat Med 9(7):969–973

    Article  CAS  PubMed  Google Scholar 

  30. Uhrbom L, Nerio E, Holland EC (2004) Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nat Med 10(11):1257–1260

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Lee KC, Bhojani MS, Khan AP, Shilman A, Holland EC et al (2007) Molecular imaging of Akt kinase activity. Nat Med 13(9):1114–1119

    Article  CAS  PubMed  Google Scholar 

  32. Gross S, Piwnica-Worms D (2005) Real-time imaging of ligand-induced IKK activation in intact cells and in living mice. Nat Methods 2(8):607–614

    Article  CAS  PubMed  Google Scholar 

  33. Lu X, Yan CH, Yuan M, Wei Y, Hu G, Kang Y (2010) In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Cancer Res 70(10):3905–3914, PMCID: 2872139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Luo J, Lin AH, Masliah E, Wyss-Coray T (2006) Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration. Proc Natl Acad Sci U S A 103(48):18326–18331, PMCID: 1838750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lin AH, Luo J, Mondshein LH, ten Dijke P, Vivien D, Contag CH et al (2005) Global analysis of Smad2/3-dependent TGF-beta signaling in living mice reveals prominent tissue-specific responses to injury. J Immunol 175(1):547–554

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Lu Y, Dai J, Yao Z, Kitazawa R, Kitazawa S et al (2004) In vivo real-time imaging of TGF-beta-induced transcriptional activation of the RANK ligand gene promoter in intraosseous prostate cancer. Prostate 59(4):360–369

    Article  CAS  PubMed  Google Scholar 

  37. Chong AK, Satterwhite T, Pham HM, Costa MA, Luo J, Longaker MT et al (2007) Live imaging of Smad2/3 signaling in mouse skin wound healing. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair. Society 15(5):762–766

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Kang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kang, Y. (2016). Imaging TGFβ Signaling in Mouse Models of Cancer Metastasis. In: Feng, XH., Xu, P., Lin, X. (eds) TGF-β Signaling. Methods in Molecular Biology, vol 1344. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2966-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2966-5_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2965-8

  • Online ISBN: 978-1-4939-2966-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics