Skip to main content

Isolation and Manipulation of Adipogenic Cells to Assess TGF-β Superfamily Functions

  • Protocol
TGF-β Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1344))

Abstract

A variety of TGF-β superfamily members affect adipocyte differentiation and function with consequential effects on energy metabolism. There has been a growing interest in this area because of the apparent influence of the BMP subgroup on brown adipose characteristics and potential application to the treatment of human obesity. In this chapter we describe methods that are useful in allowing one to assess the roles of specific members of the superfamily on adipocyte differentiation and mature adipocyte function, including the isolation and differentiation of mouse embryo fibroblasts (MEFs) to examine cell autonomous effects and the efficient transfection of two commonly used (but difficult to transfect) adipogenic cell lines, C3H/10T1/2 and 3T3-L1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307(5):491–497

    Article  PubMed  Google Scholar 

  2. Tang QQ, Otto TC, Lane MD (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci 101(26):9607–9611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454(7207):1000–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Huang H, Song TJ, Li X, Hu L, He Q, Liu M, Lane MD, Tang QQ (2009) BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci 106(31):12670–12675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Townsend KL, An D, Lynes MD, Huang TL, Zhang H, Goodyear LJ, Tseng Y-H (2013) Increased Mitochondrial Activity in BMP7-Treated Brown Adipocytes, Due to Increased CPT1- and CD36-Mediated Fatty Acid Uptake. Antioxidants & Redox signaling 19(3):243–257

    Article  CAS  Google Scholar 

  6. Choy L, Derynck R (2003) Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem 278(11):9609–9619

    Article  CAS  PubMed  Google Scholar 

  7. Tsurutani Y, Fujimoto M, Takemoto M, Irisuna H, Koshizaka M, Onishi S, Ishikawa T, Mezawa M, He P, Honjo S, Maezawa Y, Saito Y, Yokote K (2011) The roles of transforming growth factor-β and Smad3 signaling in adipocyte differentiation and obesity. Biochem Biophys Res Commun. 407(1):68–73

    Google Scholar 

  8. Zaragosi LE, Wdziekonski B, Villageois P, Keophiphath M, Maumus M, Tchkonia T, Bourlier V, Mohsen-Kanson T, Ladoux A, Elabd C, Scheideler M, Trajanoski Z, Takashima Y, Amri EZ, Lacasa D, Sengenes C, Ailhaud G, Clement K, Bouloumie A, Kirkland JL, Dani C (2010) Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors. Diabetes 59(10):2513–2521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Otto TC, Lane MD (2005) Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol 40(4): 229–242

    Article  CAS  PubMed  Google Scholar 

  10. Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17(4):771–779

    Article  CAS  PubMed  Google Scholar 

  11. Konieczny SF, Emerson CP, Jr. (1984) 5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Cell 38(3):791–800

    Article  CAS  PubMed  Google Scholar 

  12. Young HE, Mancini ML, Wright RP, Smith JC, Black AC, Jr., Reagan CR, Lucas PA (1995) Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 202(2):137–144

    Article  CAS  PubMed  Google Scholar 

  13. Bowers RR, Kim JW, Otto TC, Lane MD (2006) Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc Natl Acad Sci U S A 103(35):13022–13027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495

    Article  CAS  PubMed  Google Scholar 

  15. Wu Z, Bucher NL, Farmer SR (1996) Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 16(8):4128–4136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171

    Article  CAS  PubMed  Google Scholar 

  17. Timchenko NA, Wilde M, Nakanishi M, Smith JR, Darlington GJ (1996) CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein. Genes Dev 10(7):804–815

    Article  CAS  PubMed  Google Scholar 

  18. Morrison RF, Farmer SR (1999) Role of PPARgamma in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J Biol Chem 274(24):17088–17097

    Article  CAS  PubMed  Google Scholar 

  19. Ahrens M, Ankenbauer T, Schroder D, Hollnagel A, Mayer H, Gross G (1993) Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol 12(10):871–880

    CAS  PubMed  Google Scholar 

  20. Kang Q, Song WX, Luo Q, Tang N, Luo J, Luo X, Chen J, Bi Y, He BC, Park JK, Jiang W, Tang Y, Huang J, Su Y, Zhu GH, He Y, Yin H, Hu Z, Wang Y, Chen L, Zuo GW, Pan X, Shen J, Vokes T, Reid RR, Haydon RC, Luu HH, He TC (2009) A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 18(4):545–559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Bowers RR, Lane MD (2007) A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle 6(4):385–389

    Article  CAS  PubMed  Google Scholar 

  22. Neumann K, Endres M, Ringe J, Flath B, Manz R, Haupl T, Sittinger M, Kaps C (2007) BMP7 promotes adipogenic but not osteo-/chondrogenic differentiation of adult human bone marrow-derived stem cells in high-density micro-mass culture. J Cell Biochem 102(3):626–637

    Article  CAS  PubMed  Google Scholar 

  23. Shen JJ, Huang L, Li L, Jorgez C, Matzuk MM, Brown CW (2009) Deficiency of growth differentiation factor 3 protects against diet-induced obesity by selectively acting on white adipose. Mol Endocrinol 23(1):113–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Andersson O, Korach-Andre M, Reissmann E, Ibanez CF, Bertolino P (2008) Growth/differentiation factor 3 signals through ALK7 and regulates accumulation of adipose tissue and diet-induced obesity. Proc Natl Acad Sci 105(20):7252–7256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wang W, Yang Y, Meng Y, Shi Y (2004) GDF-3 is an adipogenic cytokine under high fat dietary condition. Biochem Biophys Res Commun 321(4):1024–1031

    Article  CAS  PubMed  Google Scholar 

  26. Witthuhn BA, Bernlohr DA (2001) Upregulation of bone morphogenetic protein GDF-3/Vgr-2 expression in adipose tissue of FABP4/aP2 null mice. Cytokine 14:129-135

    Article  CAS  PubMed  Google Scholar 

  27. Levine AJ, Brivanlou AH (2006) GDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos. Development 133(2):209–216

    Article  CAS  PubMed  Google Scholar 

  28. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L (2003) Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23(20):7230–7242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Robinson KA, Ball LE, Buse MG (2007) Reduction of O-GlcNAc protein modification does not prevent insulin resistance in 3T3-L1 adipocytes. American journal of physiology Endocrinology and metabolism 292(3):E884–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Stroh T, Erben U, Kühl AA, Zeitz M, Siegmund B (2010) Combined pulse electroporation—a novel strategy for highly efficient transfection of human and mouse cells. PloS one 5(3):e9488

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kim JA, Cho K, Shin MS, Lee WG, Jung N, Chung C, Chang JK (2008) A novel electroporation method using a capillary and wire-type electrode. Biosensors & bioelectronics 23(9):1353–1360

    Article  CAS  Google Scholar 

  32. Hogan B, Beddington R, Constantini F, Lacy E (1994) Manipulating the Mouse Embryo: A Laboratory Manual, Second edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  33. Choy L, Skillington J, Derynck R (2000) Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol 149(3):667–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sugii S, Olson P, Sears DD, Saberi M, Atkins AR, Barish GD, Hong S-H, Castro GL, Yin Y-Q, Nelson MC, Hsiao G, Greaves DR, Downes M, Yu RT, Olefsky JM, Evans RM (2009) PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci 106(52):22504–22509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. de Souza CJ, Eckhardt M, Gagen K, Dong M, Chen W, Laurent D, Burkey BF (2001) Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 50(8):1863–1871

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chester W. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Namwanje, M., Bournat, J.C., Brown, C.W. (2016). Isolation and Manipulation of Adipogenic Cells to Assess TGF-β Superfamily Functions. In: Feng, XH., Xu, P., Lin, X. (eds) TGF-β Signaling. Methods in Molecular Biology, vol 1344. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2966-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2966-5_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2965-8

  • Online ISBN: 978-1-4939-2966-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics