Skip to main content

Spatiotemporal Investigation of Phosphorylation Events During Cell Cycle Progression

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1342))

Abstract

Polo-like kinase 1 (Plk1) is an essential kinase for mitotic commitment and progression through mitosis. In contrast to its well characterized roles during mitosis, the precise molecular events controlled by Plk1 during G2/M progression and their spatiotemporal regulation are still poorly elucidated. We recently investigated Plk1-dependent regulation of Cdc25C phosphatase, an activator of the master mitotic driver Cyclin B1-Cdk1. To this end, we generated a genetically encoded FRET (Förster Resonance Energy Transfer)-based Cdc25C phosphorylation biosensor to observe Cdc25 spatiotemporal phosphorylation during cell cycle progression in live single cell assays. Because this approach proved to be powerful, we provide here guidelines for the development of biosensors for any phosphorylation site of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schmitz MH, Held M, Janssens V et al (2010) Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells. Nat Cell Biol 12:886–893, doi: ncb2092 [pii] 10.1038/ncb2092

    Article  CAS  PubMed  Google Scholar 

  2. Blethrow JD, Glavy JS, Morgan DO, Shokat KM (2008) Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc Natl Acad Sci U S A 105:1442–1447. doi:10.1073/pnas.0708966105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kettenbach AN, Schweppe DK, Faherty BK et al (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 4:rs5. doi:10.1126/scisignal.2001497

    Article  CAS  PubMed  Google Scholar 

  4. Macurek L, Lindqvist A, Lim D et al (2008) Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455:119–123, doi: nature07185 [pii] 10.1038/nature07185

    Article  CAS  PubMed  Google Scholar 

  5. Seki A, Coppinger JA, Jang C-YY et al (2008) Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320:1655–1658. doi:10.1126/science.1157425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gheghiani L, Loew D, Lombard B et al (2015) Plk1 pool activation in late G2 sets up commitment to mitosis

    Google Scholar 

  7. Lénárt P, Petronczki M, Steegmaier M et al (2007) The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol 17:304–315. doi:10.1016/j.cub.2006.12.046

    Article  PubMed  Google Scholar 

  8. Lane HA, Nigg EA (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 135:1701–1713

    Article  CAS  PubMed  Google Scholar 

  9. Petronczki M, Glotzer M, Kraut N, Peters J-M (2007) Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev Cell 12:713–725. doi:10.1016/j.devcel.2007.03.013

    Article  CAS  PubMed  Google Scholar 

  10. Watanabe N, Arai H, Iwasaki J et al (2005) Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. Proc Natl Acad Sci U S A 102:11663–11668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roshak AK, Capper EA, Imburgia C et al (2000) The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal 12:405–411, doi: S0898-6568(00)00080-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Kumagai A, Dunphy WG (1998) Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273:1377–1380

    Article  Google Scholar 

  13. Pilji A, Wilmanns M, Schultz C et al (2011) Rapid development of genetically encoded FRET reporters. ACS Chem Biol 6:685–691. doi:10.1021/cb100402n

    Article  Google Scholar 

  14. Fritz RD, Letzelter M, Reimann A et al (2013) A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space. Sci Signal 6:rs12. doi:10.1126/scisignal.2004135

    Article  PubMed  Google Scholar 

  15. Thestrup T, Litzlbauer J, Bartholomäus I et al (2014) Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat Methods 11:175–182. doi:10.1038/nmeth.2773

    Article  CAS  PubMed  Google Scholar 

  16. Liu D, Davydenko O, Lampson MA (2012) Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing. J Cell Biol 198:491–499. doi:10.1083/jcb.201205090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360. doi:10.1038/nbt1066

    Article  CAS  PubMed  Google Scholar 

  18. Golsteyn RM, Mundt KE, Fry AM, Nigg EA (1995) Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J Cell Biol 129:1617–1628

    Article  CAS  PubMed  Google Scholar 

  19. Tsien R, Harootunian A (1990) Practical design criteria for a dynamic ratio imaging system. Cell Calcium 11:93–109. doi:10.1016/0143-4160(90)90063-Z

    Article  CAS  PubMed  Google Scholar 

  20. Durocher D, Taylor IA, Sarbassova D et al (2000) The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell 6:1169–1182

    Article  CAS  PubMed  Google Scholar 

  21. Violin JD, Zhang J, Tsien RY, Newton AC (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161:899–909, doi: 10.1083/jcb.200302125 jcb.200302125 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshizaki H, Ohba Y, Kurokawa K et al (2003) Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 162:223–232, doi: 10.1083/jcb.200212049 jcb.200212049 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gavet O, Pines J (2010) Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Biol 189:247–259. doi:10.1083/jcb.200909144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Agircan FG, Schiebel E (2014) Sensors at centrosomes reveal determinants of local separase activity. PLoS Genet 10(10), e1004672. doi:10.1371/journal.pgen.1004672

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fuller BG, Lampson MA, Foley EA et al (2008) Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453:1132–1136, doi: nature06923 [pii] 10.1038/nature06923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu D, Vader G, Vromans MJ et al (2009) Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323:1350–1353. doi:10.1126/science.1167000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Belal ASF, Sell BR, Hoi H et al (2014) Optimization of a genetically encoded biosensor for cyclin B1-cyclin dependent kinase 1. Mol Biosyst 10:191–195. doi:10.1039/c3mb70402e

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Gavet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gheghiani, L., Gavet, O. (2016). Spatiotemporal Investigation of Phosphorylation Events During Cell Cycle Progression. In: Coutts, A., Weston, L. (eds) Cell Cycle Oscillators. Methods in Molecular Biology, vol 1342. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2957-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2957-3_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2956-6

  • Online ISBN: 978-1-4939-2957-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics