Skip to main content

A Computational Method for Identifying Yeast Cell Cycle Transcription Factors

  • Protocol
Cell Cycle Oscillators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1342))

Abstract

The eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs) that regulate the expression of cell cycle-regulated genes. Here, we describe a computational method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor-binding site (TFBS), and cell cycle gene expression data. For each identified cell cycle TF, our method also assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. Moreover, our method can identify novel cell cycle-regulated genes as a by-product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowicka M, Kudlicki A, Tu BP et al (2007) High-resolution timing of cell cycle-regulated gene expression. Proc Natl Acad Sci U S A 104(43):16892–16897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spellman PT, Sherlock G, Zhang MQ et al (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simon I, Barnett J, Hannett N et al (2001) Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106:697–708

    Article  CAS  PubMed  Google Scholar 

  4. MacIsaac KD, Wang T, Gordon DB et al (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113

    Article  PubMed  PubMed Central  Google Scholar 

  5. Teixeira MC, Monteiro P, Jain P et al (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34:D446–D451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harbison CT, Gordon DB, Lee TI et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Lichtenberg U, Jensen LJ, Fausbøll A et al (2005) Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics 21(7):1164–1171

    Article  PubMed  Google Scholar 

  8. Faires JD, Burden R (1998) Numerical methods, 2nd edn. Brooks/Cole Publishing Company, Pacific Grove

    Google Scholar 

  9. Wu WS, Li WH (2008) Systematic identification of yeast cell cycle transcription factors using multiple data sources. BMC Bioinformatics 9:522

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu WS, Li WH, Chen BS (2008) Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation. Gene Regul Syst Bio 2:53–62

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu WS, Li WH (2008) Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics 9:439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu WS, Li WH, Chen BS (2006) Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics 7:421

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wu WS, Li WH, Chen BS (2007) Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics 8:188

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kato M, Tsunoda T, Takagi T (2001) Lag analysis of genetic networks in the cell cycle of budding yeast. Genome Inform 12:266–267

    CAS  Google Scholar 

  15. Reis BY, Butte AJ, Kohane IS et al (2000) Approaching causality: discovering time-lag correlations in genetic expression data with static and dynamic relevance networks. RECOMB 2000:5

    Google Scholar 

  16. Schmitt WA Jr, Raab RM, Stephanopoulos G (2004) Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data. Genome Res 14:1654–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liping J, Tan KL (2005) Identifying time-lagged gene clusters using gene expression data. Bioinformatics 21:509–516

    Article  Google Scholar 

  18. Qian J, Dolled-Filhart M, Lin J et al (2001) Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J Mol Biol 314:1053–1066

    Article  CAS  PubMed  Google Scholar 

  19. Mendenhall W, Sincich T (1995) Statistics for engineering and the sciences, 4th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  20. Wu WS, Chen BS (2007) Identifying stress transcription factors using gene expression and TF-gene association data. Bioinform Biol Insights 1:9–17

    Google Scholar 

  21. Wang H, Wang YH, Wu WS (2011) Yeast cell cycle transcription factors identification by variable selection criteria. Gene 485:172–176

    Article  CAS  PubMed  Google Scholar 

  22. Yang TH, Wu WS (2012) Identifying biologically interpretable transcription factor knockout targets by jointly analyzing the transcription factor knockout microarray and the ChIP-chip data. BMC Syst Biol 6:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lai FJ, Jhu MH, Chiu CC et al (2014) Identifying cooperative transcription factors in yeast using multiple data sources. BMC Syst Biol BMC Syst Biol. 2014;8 Suppl 5:S2

    Google Scholar 

  24. Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  PubMed  Google Scholar 

  25. Banerjee N, Zhang MQ (2003) Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res 31:7024–7031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bar-Joseph Z, Gerber GK, Lee TI et al (2003) Computational discovery of gene modules and regulatory networks. Nat Biotechnol 21:1337–1342

    Article  CAS  PubMed  Google Scholar 

  27. Kato M, Hata N, Banerjee N et al (2004) Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol 5:R56

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gao F, Foat BC, Bussemaker HJ (2004) Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 5(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liao JC, Boscolo R, Yang YL et al (2003) Network component analysis: reconstruction of regulatory signals in biological system. Proc Natl Acad Sci U S A 100:15522–15527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu T, Li KC (2005) Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics 21:4033–4038

    Article  CAS  PubMed  Google Scholar 

  31. Zhou XJ, Kao MC, Huang H et al (2005) Functional annotation and network reconstruction through cross-platform integration of microarray data. Nat Biotechnol 23:238–243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Wen-Hsiung Li for helpful discussions. This work was supported by National Cheng Kung University and Ministry of Science and Technology of Taiwan (MOST-103-2221-E-006-174-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Sheng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wu, WS. (2016). A Computational Method for Identifying Yeast Cell Cycle Transcription Factors. In: Coutts, A., Weston, L. (eds) Cell Cycle Oscillators. Methods in Molecular Biology, vol 1342. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2957-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2957-3_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2956-6

  • Online ISBN: 978-1-4939-2957-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics