Skip to main content

Cell Cycle Control: A System of Interlinking Oscillators

  • Protocol
Cell Cycle Oscillators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1342))

Abstract

The cell cycle is the sequence of events through which a cell duplicates its genome, grows, and divides. Key cell cycle transitions are driven by oscillators comprising cyclin-dependent kinases and other kinases. Different cell cycle oscillators are inextricably linked to ensure orderly activation of oscillators. A recurring theme in their regulation is the abundance of auto-amplifying loops that ensure switch-like and unidirectional cell cycle transitions. The periodicity of many cell cycle oscillators is choreographed by inherent mechanisms that promote automatic inactivation, often involving dephosphorylation and ubiquitin-mediated protein degradation. These inhibitory signals are subsequently suppressed to enable the next cell cycle to occur. Although the activation and inactivation of cell cycle oscillators are in essence autonomous during the unperturbed cell cycle, a number of checkpoint mechanisms are able to halt the cell cycle until defects are addressed. Together, these mechanisms orchestrate orderly progression of the cell cycle to produce more cells and to safeguard genome integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang C, Li Z, Fu M, Bouras T, Pestell RG (2004) Signal transduction mediated by cyclin D1: from mitogens to cell proliferation: a molecular target with therapeutic potential. Cancer Treat Res 119:217–237

    Article  CAS  PubMed  Google Scholar 

  2. Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, Rustgi A, Fuchs SY, Diehl JA (2006) Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell 24:355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henley SA, Dick FA (2012) The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div 7:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen HZ, Tsai SY, Leone G (2009) Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9:785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Massague J (2008) TGFbeta in Cancer. Cell 134:215–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu W, Wu G, Li W, Lobur D, Wan Y (2007) Cdh1-anaphase-promoting complex targets Skp2 for destruction in transforming growth factor beta-induced growth inhibition. Mol Cell Biol 27:2967–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004) Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428:190–193

    Article  CAS  PubMed  Google Scholar 

  8. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WGJ (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428:194–198

    Article  CAS  PubMed  Google Scholar 

  9. Nelson DA, Krucher NA, Ludlow JW (1997) High molecular weight protein phosphatase type 1 dephosphorylates the retinoblastoma protein. J Biol Chem 272:4528–4535

    Article  CAS  PubMed  Google Scholar 

  10. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112

    Article  CAS  PubMed  Google Scholar 

  11. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M (2010) Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 79:89–130

    Article  CAS  PubMed  Google Scholar 

  12. Matthews LA, Guarne A (2013) Dbf4: the whole is greater than the sum of its parts. Cell Cycle 12:1180–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hinchcliffe EH, Sluder G (2001) “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev 15:1167–1181

    Article  CAS  PubMed  Google Scholar 

  14. Dynlacht BD, Moberg K, Lees JA, Harlow E, Zhu L (1997) Specific regulation of E2F family members by cyclin-dependent kinases. Mol Cell Biol 17:3867–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krek W, Xu G, Livingston DM (1995) Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 83:1149–1158

    Article  CAS  PubMed  Google Scholar 

  16. Marti A, Wirbelauer C, Scheffner M, Krek W (1999) Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1:14–19

    Article  CAS  PubMed  Google Scholar 

  17. Friedel AM, Pike BL, Gasser SM (2009) ATR/Mec1: coordinating fork stability and repair. Curr Opin Cell Biol 21:237–244

    Article  CAS  PubMed  Google Scholar 

  18. Fung TK, Poon RY (2005) A roller coaster ride with the mitotic cyclins. Semin Cell Dev Biol 16:335–342

    Article  CAS  PubMed  Google Scholar 

  19. Ma HT, Poon RY (2011) How protein kinases co-ordinate mitosis in animal cells. Biochem J 435:17–31

    Article  CAS  PubMed  Google Scholar 

  20. Lindqvist A, Rodriguez-Bravo V, Medema RH (2009) The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol 185:193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Vugt MA, Medema RH (2005) Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24:2844–2859

    Article  PubMed  Google Scholar 

  22. Porter LA, Donoghue DJ (2003) Cyclin B1 and CDK1: nuclear localization and upstream regulators. Prog Cell Cycle Res 5:335–347

    PubMed  Google Scholar 

  23. Lens SM, Voest EE, Medema RH (2010) Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 10:825–841

    Article  CAS  PubMed  Google Scholar 

  24. Macurek L, Lindqvist A, Medema RH (2009) Aurora-A and hBora join the game of Polo. Cancer Res 69:4555–4558

    Article  CAS  PubMed  Google Scholar 

  25. Hunt T (2013) On the regulation of protein phosphatase 2A and its role in controlling entry into and exit from mitosis. Adv Biol Regul 53:173–178

    Article  CAS  PubMed  Google Scholar 

  26. Hegarat N, Vesely C, Vinod PK, Ocasio C, Peter N, Gannon J, Oliver AW, Novak B, Hochegger H (2014) PP2A/B55 and Fcp1 regulate Greatwall and Ensa dephosphorylation during mitotic exit. PLoS Genet 10:e1004004

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Poon RY (2008) The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front Biosci 13:5016–5029

    CAS  PubMed  Google Scholar 

  28. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Teixeira LK, Reed SI (2013) Ubiquitin ligases and cell cycle control. Annu Rev Biochem 82:387–414

    Article  CAS  PubMed  Google Scholar 

  30. Manchado E, Eguren M, Malumbres M (2010) The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. Biochem Soc Trans 38:65–71

    Article  CAS  PubMed  Google Scholar 

  31. Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    Article  CAS  PubMed  Google Scholar 

  32. Mapelli M, Massimiliano L, Santaguida S, Musacchio A (2007) The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131:730–743

    Article  CAS  PubMed  Google Scholar 

  33. Lesage B, Qian J, Bollen M (2011) Spindle checkpoint silencing: PP1 tips the balance. Curr Biol 21:R898–R903

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Related works in my laboratory are supported in part by the Research Grants Council of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy Y. C. Poon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Poon, R.Y.C. (2016). Cell Cycle Control: A System of Interlinking Oscillators. In: Coutts, A., Weston, L. (eds) Cell Cycle Oscillators. Methods in Molecular Biology, vol 1342. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2957-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2957-3_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2956-6

  • Online ISBN: 978-1-4939-2957-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics