Skip to main content

Defining the Functional Equivalence of Wild-Type and Chemically Engineered G Protein-Coupled Receptors

  • Protocol
Book cover Designer Receptors Exclusively Activated by Designer Drugs

Part of the book series: Neuromethods ((NM,volume 108))

Abstract

The functional connection between activation of a single G protein-coupled receptor (GPCR) and a specific physiological outcome may be obscured by the presence of other closely related members of the GPCR superfamily that share spatiotemporal patterns of expression and equipotent activation by endogenous ligands. To address this issue, molecular and chemical genetic techniques have been developed to generate mutationally modified GPCRs only susceptible to activation by one or more synthetic ligands that are inactive at the equivalent wild-type receptor. This chapter provides both an overview of strategies used to generate such “receptors activated solely by synthetic ligands” (RASSLs) and, in more detail, approaches that have been used to assess the equivalence or otherwise of function of a wild-type and corresponding RASSL receptor. The human muscarinic M3 acetylcholine receptor is used as the exemplar but similar preliminary studies should be employed before further use, particularly in vivo, of such RASSLs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAL:

2,3-Dimercapto-1-propanol

BRET:

Bioluminescence resonance energy transfer

CFP:

Cyan fluorescent protein

CNO:

Clozapine N-oxide

DREADD:

Designer receptor exclusively activated by designer drugs

EDT:

2-Ethanedithiol

FRET:

Fluorescence resonance energy transfer

Fura-2AM:

Fura-2 acetoxymethyl ester

GFP:

Green fluorescent protein

GPCR:

G protein-coupled receptor

IL3:

Third intracellular loop

IP1:

Inositol monophosphate

RASSL:

Receptor activated solely by synthetic ligands

TMD:

Transmembrane domain

YFP:

Yellow fluorescent protein

References

  1. Digby GJ, Shirey JK, Conn PJ (2010) Allosteric activators of muscarinic receptors as novel approaches for treatment of CNS disorders. Mol Biosyst 6(8):1345–1354

    Article  CAS  PubMed  Google Scholar 

  2. Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450

    Article  CAS  PubMed  Google Scholar 

  3. Kruse AC, Hu J, Kobilka BK, Wess J (2014) Muscarinic acetylcholine receptor X-ray structures: potential implications for drug development. Curr Opin Pharmacol 16:24–30

    Article  CAS  PubMed  Google Scholar 

  4. Haga K et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482(7386):547–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kow RL, Nathanson NM (2012) Structural biology: Muscarinic receptors become crystal clear. Nature 482(7386):480–481

    Article  CAS  PubMed  Google Scholar 

  6. Kruse AC et al (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482(7386):552–556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. McKinney M, Jacksonville MC (2005) Brain cholinergic vulnerability: relevance to behavior and disease. Biochem Pharmacol 70(8):1115–1124

    Article  CAS  PubMed  Google Scholar 

  8. Wess J (2012) Novel muscarinic receptor mutant mouse models. Handb Exp Pharmacol 208:95–117

    Article  CAS  PubMed  Google Scholar 

  9. Wess J et al (2003) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Receptors Channels 9(4):279–290

    Article  CAS  PubMed  Google Scholar 

  10. Conklin BR et al (2008) Engineering GPCR signaling pathways with RASSLs. Nat Methods 5(8):673–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Coward P et al (1998) Controlling signaling with a specifically designed Gi-coupled receptor. Proc Natl Acad Sci U S A 95(1):352–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pei Y, Dong S, Roth BL (2010) Generation of designer receptors exclusively activated by designer drugs (DREADDs) using directed molecular evolution. Curr Protoc Neurosc 50: 4.33.1–4.33.25

    Google Scholar 

  13. Dong S, Rogan SC, Roth BL (2010) Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 5(3):561–573

    Article  CAS  PubMed  Google Scholar 

  14. Hudson BD et al (2012) Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB J 26(12):4951–4965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168

    Article  PubMed Central  PubMed  Google Scholar 

  16. Strader CD et al (1991) Allele-specific activation of genetically engineered receptors. J Biol Chem 266(1):5–8

    CAS  PubMed  Google Scholar 

  17. Strader CD, Sigal IS, Dixon RA (1989) Genetic approaches to the determination of structure-function relationships of G protein-coupled receptors. Trends Pharmacol Sci Suppl:26–30

    Google Scholar 

  18. Sartania N, Appelbe S, Pediani JD, Milligan G (2007) Agonist occupancy of a single monomeric element is sufficient to cause internalization of the dimeric beta2-adrenoceptor. Cell Signal 19(9):1928–1938

    Article  CAS  PubMed  Google Scholar 

  19. Campbell JH, Lengyel JA, Langridge J (1973) Evolution of a second gene for beta-galactosidase in Escherichia coli. Proc Natl Acad Sci U S A 70(6):1841–1845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Price LA, Kajkowski EM, Hadcock JR, Ozenberger BA, Pausch MH (1995) Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway. Mol Cell Biol 15(11):6188–6195

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Pausch MH et al (1998) Heterologous G protein-coupled receptors expressed in Saccharomyces cerevisiae: methods for genetic analysis and ligand Identification and Expression of G protein-coupled Receptors, (196–212) Ed. Wiley-Liss, New York

    Google Scholar 

  22. Erlenbach I et al (2001) Functional expression of M-1, M-3, and M-5 muscarinic acetylcholine receptors in yeast. J Neurochem 77(5):1327–1337

    Google Scholar 

  23. Olianas MC, Maullu C, Onali P (1999) Mixed agonist-antagonist properties of clozapine at different human cloned muscarinic receptor subtypes expressed in Chinese hamster ovary cells. Neuropsychopharmacology 20(3):263–270

    Article  CAS  PubMed  Google Scholar 

  24. Davies MA, Compton-Toth BA, Hufeisen SJ, Meltzer HY, Roth BL (2005) The highly efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not a common property of either typical or atypical antipsychotic drugs: is M1 agonism a pre-requisite for mimicking clozapine’s actions? Psychopharmacology (Berl) 178(4):451–460

    Article  CAS  Google Scholar 

  25. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  26. Han SJ et al (2005) Identification of an agonist-induced conformational change occurring adjacent to the ligand-binding pocket of the M(3) muscarinic acetylcholine receptor. J Biol Chem 280(41):34849–34858

    Article  CAS  PubMed  Google Scholar 

  27. Han SJ et al (2005) Pronounced conformational changes following agonist activation of the M(3) muscarinic acetylcholine receptor. J Biol Chem 280(26):24870–24879

    Article  CAS  PubMed  Google Scholar 

  28. Ferguson SM et al (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14(1):22–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Alexander GM et al (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63(1):27–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Mayford M et al (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274(5293):1678–1683

    Article  CAS  PubMed  Google Scholar 

  31. Swaminath G et al (2005) Probing the beta2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J Biol Chem 280(23):22165–22171

    Article  CAS  PubMed  Google Scholar 

  32. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28(8):397–406

    Article  CAS  PubMed  Google Scholar 

  33. Bhattacharya S, Hall SE, Li H, Vaidehi N (2008) Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation. Biophys J 94(6):2027–2042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Alvarez-Curto E et al (2011) Developing chemical genetic approaches to explore G protein-coupled receptor function: validation of the use of a receptor activated solely by synthetic ligand (RASSL). Mol Pharmacol 80(6):1033–1046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Alvarez-Curto E, Ward RJ, Pediani JD, Milligan G (2010) Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogeneous time-resolved FRET. J Biol Chem 285(30):23318–23330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lohse MJ, Bunemann M, Hoffmann C, Vilardaga JP, Nikolaev VO (2007) Monitoring receptor signaling by intramolecular FRET. Curr Opin Pharmacol 7(5):547–553

    Article  CAS  PubMed  Google Scholar 

  37. Lohse MJ et al (2008) Kinetics of G-protein-coupled receptor signals in intact cells. Br J Pharmacol 153(Suppl 1):S125–S132

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Maier-Peuschel M et al (2010) A fluorescence resonance energy transfer-based M2 muscarinic receptor sensor reveals rapid kinetics of allosteric modulation. J Biol Chem 285(12):8793–8800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zurn A et al (2009) Fluorescence resonance energy transfer analysis of alpha 2a-adrenergic receptor activation reveals distinct agonist-specific conformational changes. Mol Pharmacol 75(3):534–541

    Article  CAS  PubMed  Google Scholar 

  40. Xu TR, Ward RJ, Pediani JD, Milligan G (2011) The orexin OX(1) receptor exists predominantly as a homodimer in the basal state: potential regulation of receptor organization by both agonist and antagonist ligands. Biochem J 439(1):171–183

    Article  CAS  PubMed  Google Scholar 

  41. Vilardaga JP (2011) Studying ligand efficacy at G protein-coupled receptors using FRET. Methods Mol Biol 756:133–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99(10):1084–1091

    Article  CAS  PubMed  Google Scholar 

  43. Hoffmann C et al (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2(3):171–176

    Article  CAS  PubMed  Google Scholar 

  44. Adams SR et al (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124(21):6063–6076

    Article  CAS  PubMed  Google Scholar 

  45. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281(5374):269–272

    Article  CAS  PubMed  Google Scholar 

  46. Martin BR, Giepmans BN, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23(10):1308–1314

    Article  CAS  PubMed  Google Scholar 

  47. Hoffmann C et al (2010) Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nat Protoc 5(10):1666–1677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Alvarez-Curto E, Pediani JD, Milligan G (2010) Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors. Anal Bioanal Chem 398(1):167–180

    Article  CAS  PubMed  Google Scholar 

  49. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14(10):1246–1251

    Article  CAS  PubMed  Google Scholar 

  50. Ormo M et al (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280):1392–1395

    Article  CAS  PubMed  Google Scholar 

  51. Ziegler N, Batz J, Zabel U, Lohse MJ, Hoffmann C (2011) FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors. Bioorg Med Chem 19(3):1048–1054

    Article  CAS  PubMed  Google Scholar 

  52. Wess J, Maggio R, Palmer JR, Vogel Z (1992) Role of conserved threonine and tyrosine residues in acetylcholine binding and muscarinic receptor activation. A study with m3 muscarinic receptor point mutants. J Biol Chem 267(27):19313–19319

    CAS  PubMed  Google Scholar 

  53. Poulin B et al (2010) The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci U S A 107(20):9440–9445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Tobin AB, Butcher AJ, Kong KC (2008) Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 29(8):413–420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Butcher AJ, Tobin AB, Kong KC (2011) Examining site-specific GPCR phosphorylation. Methods Mol Biol 746:237–249

    Article  CAS  PubMed  Google Scholar 

  56. Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25(2):105–111

    Article  CAS  PubMed  Google Scholar 

  57. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308(5721):512–517

    Article  CAS  PubMed  Google Scholar 

  58. Lefkowitz RJ, Whalen EJ (2004) beta-arrestins: traffic cops of cell signaling. Curr Opin Cell Biol 16(2):162–168

    Article  CAS  PubMed  Google Scholar 

  59. Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 17(3):126–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Shukla AK (2014) Biasing GPCR signaling from inside. Sci Signal 7(310):pe3

    Article  PubMed  Google Scholar 

  61. Verkaar F et al (2008) G protein-independent cell-based assays for drug discovery on seven-transmembrane receptors. Biotechnol Annu Rev 14:253–274

    Article  CAS  PubMed  Google Scholar 

  62. Gautier A et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136

    Article  CAS  PubMed  Google Scholar 

  63. Ward RJ, Pediani JD, Milligan G (2011) Heteromultimerization of cannabinoid CB(1) receptor and orexin OX(1) receptor generates a unique complex in which both protomers are regulated by orexin A. J Biol Chem 286(43):37414–37428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Hamdan FF, Audet M, Garneau P, Pelletier J, Bouvier M (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen 10(5):463–475

    Article  CAS  PubMed  Google Scholar 

  65. Kocan M, Pfleger KD (2009) Detection of GPCR/beta-arrestin interactions in live cells using bioluminescence resonance energy transfer technology. Methods Mol Biol 552:305–317

    Article  CAS  PubMed  Google Scholar 

  66. Kocan M, Dalrymple MB, Seeber RM, Feldman BJ, Pfleger KD (2010) Enhanced BRET technology for the monitoring of agonist-induced and agonist-independent interactions between GPCRs and beta-arrestins. Front Endocrinol 1:12

    Google Scholar 

  67. Kocan M, See HB, Seeber RM, Eidne KA, Pfleger KD (2008) Demonstration of improvements to the bioluminescence resonance energy transfer (BRET) technology for the monitoring of G protein-coupled receptors in live cells. J Biomol Screen 13(9):888–898

    Article  CAS  PubMed  Google Scholar 

  68. Jenkins L et al (2012) Antagonists of GPR35 display high species ortholog selectivity and varying modes of action. J Pharmacol Exp Ther 343(3):683–695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Rogan SC, Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63(2):291–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Mailman RB (2007) GPCR functional selectivity has therapeutic impact. Trends Pharmacol Sci 28(8):390–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Violin JD, Lefkowitz RJ (2007) Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 28(8):416–422

    Article  CAS  PubMed  Google Scholar 

  72. Vaidehi N, Kenakin T (2010) The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharmacol 10(6):775–781

    Article  CAS  PubMed  Google Scholar 

  73. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9(5):373–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336(2):296–302

    Article  CAS  PubMed  Google Scholar 

  75. Smith NJ, Bennett KA, Milligan G (2011) When simple agonism is not enough: emerging modalities of GPCR ligands. Mol Cell Endocrinol 331(2):241–247

    Article  CAS  PubMed  Google Scholar 

  76. Shaw G, Morse S, Ararat M, Graham FL (2002) Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16(8):869–871

    CAS  PubMed  Google Scholar 

  77. Garner AR et al (2012) Generation of a synthetic memory trace. Science 335(6075):1513–1516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Zhu H et al (2014) Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 39(8):1880–1892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Park JS et al (2014) Synthetic control of mammalian-cell motility by engineering chemotaxis to an orthogonal bioinert chemical signal. Proc Natl Acad Sci U S A 111(16):5896–5901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Sasaki K et al (2011) Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One 6(5), e20360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Krashes MJ et al (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121(4):1424–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Wess J, Nakajima K, Jain S (2013) Novel designer receptors to probe GPCR signaling and physiology. Trends Pharmacol Sci 34(7):385–392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Guettier JM et al (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106(45):19197–19202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Nakajima K, Wess J (2012) Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol 82(4):575–582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Milligan G, Canals M, Pediani JD, Ellis J, Lopez-Gimenez JF (2006) The role of GPCR dimerisation/oligomerisation in receptor signalling. Ernst Schering Found Symp Proc 2:145–161

    Google Scholar 

  86. Ferre S et al (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66(2):413–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Patowary S et al (2013) The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane. Biochem J 452(2):303–312

    Article  CAS  PubMed  Google Scholar 

  88. Pellissier LP et al (2011) G protein activation by serotonin type 4 receptor dimers: evidence that turning on two protomers is more efficient. J Biol Chem 286(12):9985–9997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Claeysen S, Donneger R, Giannoni P, Gaven F, Pellissier LP (2013) Serotonin type 4 receptor dimers. Methods Cell Biol 117:123–139

    Article  CAS  PubMed  Google Scholar 

  90. Herrick-Davis K, Grinde E, Harrigan TJ, Mazurkiewicz JE (2005) Inhibition of serotonin 5-hydroxytryptamine2c receptor function through heterodimerization: receptor dimers bind two molecules of ligand and one G-protein. J Biol Chem 280(48):40144–40151

    Article  CAS  PubMed  Google Scholar 

  91. Herrick-Davis K (2013) Functional significance of serotonin receptor dimerization. Exp Brain Res 230(4):375–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Gaven F et al (2013) Pharmacological profile of engineered 5-HT(4) receptors and identification of 5-HT(4) receptor-biased ligands. Brain Res 1511:65–72

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Milligan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Alvarez-Curto, E., Milligan, G. (2015). Defining the Functional Equivalence of Wild-Type and Chemically Engineered G Protein-Coupled Receptors. In: Thiel, G. (eds) Designer Receptors Exclusively Activated by Designer Drugs. Neuromethods, vol 108. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2944-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2944-3_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2943-6

  • Online ISBN: 978-1-4939-2944-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics