Skip to main content

Decellularized Extracellular Matrix Scaffolds for Cartilage Regeneration

  • Protocol
Book cover Cartilage Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1340))

Abstract

Decellularized extracellular matrix (ECM) is gaining a lot of attention as a biomaterial for tissue engineering applications. This chapter describes the processing techniques for decellularization of cell-derived ECM and protocols for the fabrication of ECM-based scaffolds in the form of hydrogels or fibrous polymer meshes by electrospinning. It describes the protocols to analyze the morphology and presence of collagen in fabricated scaffolds using scanning electron microscope and Picrosirius Red staining respectively. Methods to evaluate the metabolic activity and proliferation of cells (resazurin-based assay and DNA assay, respectively) and gene expression are also presented. Furthermore, histological techniques to analyze the presence of sulfated glycosaminoglycans are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felson DT, Zhang YQ (1998) An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum 41(8):1343–1355

    Article  CAS  Google Scholar 

  2. van der Kraan PM (2012) Osteoarthritis year 2012 in review: biology. Osteoarthritis Cartilage 20(12):1447–1450

    Article  Google Scholar 

  3. Lohmander S (2012) Osteoarthritis year 2012 in review. Osteoarthritis Cartilage 20(12):1439

    Article  Google Scholar 

  4. Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sports Med 24(1):1

    Article  Google Scholar 

  5. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  CAS  Google Scholar 

  6. Klein TJ et al (2009) Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B Rev 15(2):143–157

    Article  CAS  Google Scholar 

  7. Tur K (2009) Biomaterials and tissue engineering for regenerative repair of articular cartilage defects. Turkish J Rheumatol—Turk Romatoloji Dergisi 24(4):206–217

    Google Scholar 

  8. Bian LM et al (2009) Functional tissue engineering of articular cartilage with adult chondrocytes. Proceedings of the ASME summer bioengineering conference—2009, Part A and B, pp. 317–318

    Google Scholar 

  9. Thiede RM, Lu Y, Markel MD (2012) A review of the treatment methods for cartilage defects. Vet Comp Orthop Traumatol 25(4):263–272

    Article  CAS  Google Scholar 

  10. Badylak SE (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383

    Article  CAS  Google Scholar 

  11. Badylak SF (2007) The extracellular matrix as a scaffold for regenerative medicine. Faseb Journal 21(5):A140

    Google Scholar 

  12. Giancotti FG, Ruoslahti E (1999) Transduction—integrin signaling. Science 285(5430):1028–1032

    Article  CAS  Google Scholar 

  13. Taipale J, KeskiOja J (1997) Growth factors in the extracellular matrix. Faseb Journal 11(1):51–59

    CAS  Google Scholar 

  14. Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater 5(1):1–13

    Article  CAS  Google Scholar 

  15. Hoshiba T et al (2011) Effects of extracellular matrices derived from different cell sources on chondrocyte functions. Biotechnol Prog 27(3):788–795

    Article  CAS  Google Scholar 

  16. Eslaminejad MB, Bagheri F, Zomorodian E (2010) Matrigel enhances in vitro bone differentiation of human marrow-derived mesenchymal stem cells. Iran J Basic Med Sci 13(1):187–194

    Google Scholar 

  17. Hoshiba T, Mochitate K, Akaike T (2007) Hepatocytes maintain their function on basement membrane formed by epithelial cells. Biochem Biophys Res Commun 359(1):151–156

    Article  Google Scholar 

  18. Hoshiba T et al (2010) Decellularized matrices for tissue engineering. Expert Opin Biol Ther 10(12):1717–1728

    Article  CAS  Google Scholar 

  19. Horn MA et al (2012) The cardiac extracellular matrix is remodelled divergently with age in heart failure: a role for altered collagen degradation in an ovine rapid pacing model. Heart 98:A2

    Article  Google Scholar 

  20. Ott HC et al (2008) Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 14(2):213–221

    Article  CAS  Google Scholar 

  21. Sarig U et al (2012) Thick acellular heart extracellular matrix with inherent vasculature: a potential platform for myocardial tissue regeneration. Tissue Eng Part A 18(19–20):2125–2137

    Article  CAS  Google Scholar 

  22. Steinhoff G et al (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits—in vivo restoration of valve tissue. Circulation 102(19):50–55

    Google Scholar 

  23. Schornik D et al (2012) Extracellular matrix structure of autologous human pericardium and significance for heart valve tissue engineering. J Tissue Eng Regen Med 6:113–113

    Article  Google Scholar 

  24. Schenke-Layland K et al (2004) Comparative study of cellular and extracellular matrix composition of native and tissue engineered heart valves. Matrix Biol 23(2):113–125

    Article  CAS  Google Scholar 

  25. McFetridge PS et al (2004) Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A 70A(2):224–234

    Article  CAS  Google Scholar 

  26. Rhodes JM, Simons M (2007) The extracellular matrix and blood vessel formation: not just a scaffold. J Cell Mol Med 11(2):176–205

    Article  CAS  Google Scholar 

  27. Voytik-Harbin SL et al (1998) Small intestinal submucosa: a tissue-derived extracellular matrix that promotes tissue-specific growth and differentiation of cells in vitro. Tissue Eng 4(2):157–174

    Article  Google Scholar 

  28. Badylak SF et al (1989) Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 47(1):74–80

    Article  CAS  Google Scholar 

  29. Nihsen ES, Johnson CE (2007) Small intestinal submucosa (SIS*) provides a natural extracellular matrix microarchitecture for difficult to heal and chronic wounds. J Wound Ostomy Continence Nurs 34(3):S65

    Google Scholar 

  30. Aurora A et al (2007) Commercially available extracellular matrix materials for rotator cuff repairs: State of the art and future trends. J Shoulder Elbow Surg 16(5):171s–178s

    Article  Google Scholar 

  31. Datta N et al (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci U S A 103(8):2488–2493

    Article  CAS  Google Scholar 

  32. Lu HX et al (2011) Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials 32(36):9658–9666

    Article  CAS  Google Scholar 

  33. Chen XD et al (2007) Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res 22(12):1943–1956

    Article  CAS  Google Scholar 

  34. Postovit LM et al (2006) A three-dimensional model to study the epigenetic effects induced by the microenvironment of human embryonic stem cells. Stem Cells 24(3):501–505

    Article  CAS  Google Scholar 

  35. Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21(1):27–47

    CAS  Google Scholar 

  36. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

    Article  CAS  Google Scholar 

  37. Agarwal S, Wendorff JH, Greiner A (2009) Progress in the field of electrospinning for tissue engineering applications. Adv Mater 21(32–33):3343–3351

    Article  CAS  Google Scholar 

  38. Kumbar SG et al (2008) Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mat 3(3):034002

    Article  CAS  Google Scholar 

  39. Li WJ et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621

    Article  CAS  Google Scholar 

  40. Lannutti J et al (2007) Electrospinning for tissue engineering scaffolds. Mater Sci Eng C 27(3):504–509

    Article  CAS  Google Scholar 

  41. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211

    Article  CAS  Google Scholar 

  42. Shen MX et al (2009) Biocompatible polymeric hydrogels with tunable adhesion to both hydrophobic and hydrophilic surfaces. 2009 3rd international conference on bioinformatics and biomedical engineering, Vols 1−11, pp 1074−1077

    Google Scholar 

  43. Rosiak JM, Ulanski P, Rzeznicki A (1995) Hydrogels for biomedical purposes. Nucl Instrum Meth B 105(1–4):335–339

    Article  CAS  Google Scholar 

  44. Hoffman AS (2001) Hydrogels for biomedical applications. Bioartificial organs iii: tissue sourcing, immunoisolation, and clinical trials. Annals of the New York Academy of Science 944: 62−73

    Google Scholar 

  45. Thakkar S et al (2013) Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes. Biofabrication 5(2):025003

    Article  Google Scholar 

  46. Both SK et al (2007) A rapid and efficient method for expansion of human mesenchymal stem cells. Tissue Eng 13(1):3–9

    Article  CAS  Google Scholar 

  47. Choi JS et al (2010) Fabrication of porous extracellular matrix scaffolds from human adipose tissue. Tissue Eng Part C Methods 16(3):387–396

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Moroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thakkar, S., Fernandes, H., Moroni, L. (2015). Decellularized Extracellular Matrix Scaffolds for Cartilage Regeneration. In: Doran, P. (eds) Cartilage Tissue Engineering. Methods in Molecular Biology, vol 1340. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2938-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2938-2_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2937-5

  • Online ISBN: 978-1-4939-2938-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics