Skip to main content

Hydrogels with Tunable Properties

  • Protocol
Cartilage Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1340))

Abstract

This chapter describes the preparation of tissue engineered constructs by immobilizing chondrocytes in hydrogel with independently tunable porosity and mechanical properties. This chapter also presents the methods to characterize these tissue engineered constructs. The resulting tissue engineered constructs can be useful for the generation of cartilage tissue both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  CAS  Google Scholar 

  2. Hoo SP, Sarvi F, Li WH, Chan PPY, Yue Z (2013) Thermoresponsive cellulosic hydrogels with cell-releasing behavior. ACS Appl Mater Interfaces 5:5592–5600

    Article  CAS  Google Scholar 

  3. Zhang R, Huang Z, Xue M, Yang J, Tan T (2011) Detailed characterization of an injectable hyaluronic acid-polyaspartylhydrazide hydrogel for protein delivery. Carbohydr Polym 85:717–725

    Article  CAS  Google Scholar 

  4. Fon D, Al-Abboodi A, Chan PPY, Zhou K, Crack P, Finkelstein DI, Forsythe JS (2014) Effects of GDNF-loaded injectable gelatin-based hydrogels on endogenous neural progenitor cell migration. Adv Healthc Mater 3:761–774

    Article  CAS  Google Scholar 

  5. Wang F, Li Z, Khan M, Tamama K, Kuppusamy P, Wagner WR, Sen CK, Guan J (2010) Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater 6:1978–1991

    Article  CAS  Google Scholar 

  6. Hwang JH, Kim IG, Piao S, Jung AR, Lee JY, Park KD, Lee JY (2013) Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials 34:6037–6045

    Article  CAS  Google Scholar 

  7. Li H, Koenig AM, Sloan P, Leipzig ND (2014) In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 35:9049–9057

    Article  CAS  Google Scholar 

  8. Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32:8771–8782

    Article  CAS  Google Scholar 

  9. Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S (2014) Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev. doi:10.1016/j.addr.2014.08.010

    Google Scholar 

  10. Sarvi F, Yue Z, Hourigan K, Thompson MC, Chan PPY (2013) Surface-functionalization of PDMS for potential micro-bioreactor and embryonic stem cell culture applications. J Mater Chem B 1:987–996

    Article  CAS  Google Scholar 

  11. Balakrishnan B, Joshi N, Jayakrishnan A, Banerjee R (2014) Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater 10:3650–3663

    Article  CAS  Google Scholar 

  12. Xia W, Liu W, Cui L, Liu Y, Zhong W, Liu D, Wu J, Chua K, Cao Y (2004) Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. J Biomed Mater Res B Appl Biomater 71B:373–380

    Article  CAS  Google Scholar 

  13. Hu X, Ma L, Wang C, Gao C (2009) Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF-β1 for cartilage tissue engineering. Macromol Biosci 9:1194–1201

    Article  CAS  Google Scholar 

  14. Awad HA, Quinn WM, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222

    Article  CAS  Google Scholar 

  15. Sarem M, Moztarzadeh F, Mozafari M (2013) How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues? Carbohydr Polym 93:635–643

    Article  CAS  Google Scholar 

  16. Chen F-M, Zhao Y-M, Sun H-H, Jin T, Wang Q-T, Zhou W, Wu Z-F, Jin Y (2007) Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. J Control Release 118:65–77

    Article  CAS  Google Scholar 

  17. Wang L-S, Du C, Toh WS, Wan ACA, Gao SJ, Kurisawa M (2014) Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials 35:2207–2217

    Article  CAS  Google Scholar 

  18. Al-Abboodi A, Fu J, Doran PM, Tan TTY, Chan PPY (2014) Injectable 3D hydrogel scaffold with tailorable porosity post-implantation. Adv Healthc Mater 3:725–736

    Article  CAS  Google Scholar 

  19. Wang L-S, Chung JE, Pui-Yik CP, Kurisawa M (2010) Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 31:1148–1157

    Article  Google Scholar 

  20. Al-Abboodi A, Tjeung R, Doran PM, Yeo LY, Friend J, Yik Chan PP (2014) In situ generation of tunable porosity gradients in hydrogel-based scaffolds for microfluidic cell culture. Adv Healthc Mater 3(10):1655–1670

    Article  CAS  Google Scholar 

  21. Hoo SP, Loh QL, Yue Z, Fu J, Tan TTY, Choong C, Chan PPY (2013) Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J Mater Chem B 1:3107–3117

    Article  CAS  Google Scholar 

  22. Martens PJ, Bryant SJ, Anseth KS (2003) Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and Poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 4:283–292

    Article  CAS  Google Scholar 

  23. Al-Abboodi A, Fu J, Doran PM, Chan PPY (2013) Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams. Biotechnol Bioeng 110:318–326

    Article  CAS  Google Scholar 

  24. Ragan PM, Chin VI, Hung H-HK, Masuda K, Thonar EJMA, Arner EC, Grodzinsky AJ, Sandy JD (2000) Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disk culture system. Arch Biochem Biophys 383:256–264

    Article  CAS  Google Scholar 

  25. Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG (2007) Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28:3217–3227

    Article  CAS  Google Scholar 

  26. Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung U-i, Takato T, Hoshi K (2006) Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 78A:1–11

    Article  CAS  Google Scholar 

  27. Li W-J, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work was partly provided through Australian Research Council Discovery Grant DP 120102570. This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) which comprises the Victorian Node of the Australian National Fabrication Facility (ANFF). P.P.Y. Chan is grateful for an MCN Technology Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy P. Y. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chan, P.P.Y. (2015). Hydrogels with Tunable Properties. In: Doran, P. (eds) Cartilage Tissue Engineering. Methods in Molecular Biology, vol 1340. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2938-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2938-2_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2937-5

  • Online ISBN: 978-1-4939-2938-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics